Please use this identifier to cite or link to this item: http://dspace.pdpu.edu.ua/handle/123456789/15707
Full metadata record
DC FieldValueLanguage
dc.contributor.authorДудко, Анастасія Ігорівна-
dc.contributor.authorDudko, Anastasiia Ihorivna-
dc.contributor.authorПивоварчик, В’ячеслав Миколайович-
dc.contributor.authorPyvovarchyk, Viacheslav Mykolayovуch-
dc.date.accessioned2022-09-01T10:28:07Z-
dc.date.available2022-09-01T10:28:07Z-
dc.date.issued2020-
dc.identifier.citationDudko A. I., Pivovarchik V. N. Spectral problem of fullerene vibrations. Researches in Mathematics and Mechanics. — 2020. — V. 25, Is. 1(35). — P. 7–15.uk
dc.identifier.urihttp://dspace.pdpu.edu.ua/handle/123456789/15707-
dc.description.abstractSmall vibrations of a graph of fullerene (truncated icosahedron) is considered each edge of which is a so-called Stieltjes string (a massless thread bearing finite number of point masses) symmetric with respect to its midpoint. The spectral problem is obtained by imposing the continuity and balance of forces conditions at the vertices. It is shown that when all the edges of the graph are the same then due to the symmetry of the problem there are multiple eigenvalues. The maximal multiplicity of an eigenvalue of such problem is 32, exactly the value which is maximal for cyclically connected graphs, i.e. 𝜇 + 1 where 𝜇 is the cyclomatic number of the graph.uk
dc.language.isoenuk
dc.publisherОдеський нацiональний унiверситет iменi I. I. Мечниковаuk
dc.subjectStieltjes stringuk
dc.subjectboundary сonditionsuk
dc.subjectgraphuk
dc.subjectmultiplicityuk
dc.subjecteigenvalueuk
dc.subjectcyclomatic numberuk
dc.subjectrecurrence relationsuk
dc.titleSpectral problem of fullerene vibrationsuk
dc.typeArticleuk
Appears in Collections:Кафедра вищої математики і статистики

Files in This Item:
File Description SizeFormat 
Spectral problem of Fullerene vibrations.pdf448.78 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.