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ON CHARACTERISTIC FUNCTIONS OF OPERATORS ON

EQUILATERAL GRAPHS

V. PIVOVARCHIK AND O. TAYSTRUK

Dedicated to the memory of A. G. Kostyuchenko

Abstract. Known connection between discrete and continuous Laplacians in case

of same symmetric potential on the edges of a quantum graph is used to construct
characteristic functions of quantum graphs and to find some parameters of graphs
using spectra of boundary value problems.

1. Introduction

Usually the term ’quantum graphs’ means metric graphs considered as quasi-one-
dimensional domains with differential operations defined on these domains [7], [8]. In
quantum mechanics the Sturm-Liouville, the Dirac equation and in vibration theory the
string equation is considered on the edges of a graph subject to matching and boundary
conditions at the vertices. These are Dirichlet or Neumann or Robin conditions at pen-
dant vertices and continuity conditions together with Kirchhoff’s conditions at interior
vertices. Such models are often used in problems of free-electron theory of conjugate
molecules in chemistry and in the theory of quantum wires and thin wave-guides. The
differential operations together with the matching and boundary conditions define an
operator which is usually called continuous Laplacian. Since the literature on this topic
is vast we refer just to some of the authors: [13]–[22], [24].

There are different definitions of the so called discrete (combinatorial) Laplacian (see
[6], [4], [5]). We will use the one in [6] (see (2.3) below). This operator acting on a finite
dimensional space is related to the adjacency matrix.

The question of connection between continuous and discrete Laplacian was pointed
out in [1] and developed on rigorous level in [11] (see also [3], [2], [25], [26]). This
connection exists in the case of free continuous Laplacian or under restrictive conditions
on the potentials of the Sturm-Liouville equations on the edges of the graph. The edges
must be of the same length, the potential must be the same on all the edges and to be
symmetric with respect to the midpoint of the edge.

In this paper we use these relation between continuous and discrete Laplacians to
describe some general features of the characteristic functions and spectra of quantum
graphs. In [14] a general formula was obtained which allows to find the cyclomatic
number of a graph using the spectrum of a boundary value problem defined on this graph.
However, this formula is rather involved. Our results allow to determine the cyclomatic
number in a very simple way for equilateral quantum graphs with a symmetric potential
on the edges (see Remark 3.6). It is shown that symmetry of a graph leads to existence
of multiple eigenvalues.
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2. Formulation of the problem

For a graph G we denote its vertices by vi, i = 1, 2, . . . , p, where p is the number of
the vertices of G, its edges by ej , j = 1, 2, . . . , g, where g is the number of edges of G.
For each i denote by d(vi) the degree of the vertex vi and assume the lengths of edges
to be the same.

Definition 2.1. Two vertices v and w of a connected graph G are said to be cyclically
connected if a finite set of cycles C1, C2, . . . , Ck (Cj ⊂ G, j = 1, 2, . . . , k) exists such
that v ∈ C1, w ∈ Ck and each neighboring pair of cycles possesses at least one common
vertex.

Definition 2.2. A graph is said to be cyclically connected if each pair of vertices in it
is cyclically connected.

If we direct the edges of G to obtain an oriented graph then in addition to the degree
d(vi) of a vertex vi we introduce d

+(vi) the indegree, the number of edges directed towards
the vertex and d−(vi), the outdegree, the number of edges directed away from the vertex
vi.

The local coordinate on G identifies a directed edge ej (j = 1, 2, . . . , g) of G with
the interval [0, l] and the coordinate x increases in the direction of the edge. Thus, we
assume the edges to have the same length.

To every cycle we ascribe any of the two possible directions. It is clear that the
direction of an edge can be opposite to the direction of the cycle.

Definition 2.3. The matrix M = {Mk,j}, k = 1, 2, . . . , s, j = 1, 2, . . . , g, where s is the
number of cycles, is said to be the matrix of cycles for an oriented graph G if

1) for an edge ej which does not belong to the k-th cycle Mk,j = 0,
2) for an edge ej which belongs to the k-th cycle and whose direction coincides with

the direction of the cycle Mj,k = 1,
3) for an edge ej which belongs to the k-th cycle and whose direction is opposite to

the direction of the cycle Mj,k = −1.

Definition 2.4. A set of cycles in an oriented graph G is said to be linearly independent
if the corresponding set of rows in the matrix of cycles is linearly independent. The rank
µ of this matrix is said to be the cyclomatic number of the graph G.

It is known (see, e.g. [9], p. 545) that µ = g − p+ 1 where p is the number of vertices
in G.

Let us equip each edge ej with a real-valued function qj which belongs to L1[0, l]
(j = 1, 2, . . . , g). Now we introduce the operator L which we associate with the directed
graph G equipped with the functions qj . First we introduce the Sturm-Liouville operation
pj on each edge ej . Let the domain D(pj) of the differential operation pj be the set of
functions fj continuous on ej (on [0, l]) which possess absolutely continuous derivatives
f ′
j and therefore f ′′

j exist a.e. on [0, l]. For fj ∈ D(pj) we define the operation pj by the

equation (pjf)(x) = −d2fj(x)
dx2 + qj(x)fj(x) a.e. on [0, l] (j = 1, 2, . . . , g). Let us consider

vector-functions F (x) = (f1(x), f2(x), . . . , fg(x)) defined on [0, l]. We denote the set of
vector-functions F such that fj ∈ L2[0, l], j = 1, 2, . . . , g by H. Defining multiplication
by constant and addition in the usual way we equip H with the inner product

(F,B)H =

g
∑

j=1

∫ l

0

fj(x)bj(x) dx,

where B = (b1(x), b2(x), . . . , bg(x)) ∈ H. Thus, H is a Hilbert space. It is easy to see
that this space is separable.



ON CHARACTERISTIC FUNCTIONS OF OPERATORS ON EQUILATERAL GRAPHS 191

Let D(P ) be the set of vector-functions Y (x) = (y1(x), y2(x), . . . , yg(x)), where yj ∈
D(pj) (j = 1, 2, . . . , g). For Y ∈ D(P ) we define the operation P by the equation

P (Y ) = ((p1y1)(x), (p2y2)(x), . . . , (pgyg)(x)).

Let J be the set of numbers of the edges incident with pendant vertices, K be the set
of numbers of interior vertices, W−

i the set of numbers of edges outgoing away from the
vertex vi and W+

i the set numbers of edges incoming into the vertex vi (i = 1, 2, . . . , p).
Now we are ready to construct the operator L. Its domain D is the set of vector-

functions F = F (x) = (f1(x), f2(x), . . . , fg(x)) such that

1) F ∈ (H ∩D(P )),
2) P (F ) ∈ H,
3) if vi is a pendant vertex and W−

i = {j} (W+
i = {j}) then

(2.1)
dfj(x)

dx

∣

∣

∣

∣

x=0

= 0

(

dfj(x)

dx

∣

∣

∣

∣

x=l

= 0

)

,

4) (continuity condition) for each i ∈ K and each j ∈ W+
i and each k ∈ W−

i :
fj(l) = fk(0),

5) (Kirchhoff condition) for each i ∈ K

(2.2)
∑

j∈W+
i

dfj(x)

dx

∣

∣

∣

∣

x=l

=
∑

j∈W−

i

dfj(x)

dx

∣

∣

∣

∣

x=0

(i ∈ K).

By L we denote the operator acting in H according to

LF = P (F )

with the domain D.

Remark 2.5. If W+
i or W−

i is empty then the 0 must stand in the left- or the right-hand
side of (2.2), correspondingly. Also condition 4) should look like fj1(0) = fj2(0) = · · · =
fj

d−(vi)
(0) or fk1

(l) = fk2
(l) = · · · = fk

d+(vi)
(l), correspondingly.

Remark 2.6. To simplify notations we write f ′
j(0) and f ′

j(l) instead of
dfj(x)
dx

∣

∣

∣

x=0
and

dfj(x)
dx

∣

∣

∣

x=l
in the sequel. We admit the corresponding simplification for the second deriva-

tives too.
It is easy to see that L is a self-adjoint operator in H (see, i.e. [13], [12], [18]). Since

all the edges are of finite length and qj ∈ L1[0, l] (j = 1, 2, . . . , g), the spectrum of L
is discrete, i.e. it consists of normal (isolated Fredholm) eigenvalues which accumulate
only at infinity. It should be mentioned that the self-adjoint matching condition which
are considered in [13] are more general than (2.2).

Now let us define the discrete Laplacian [6].
We define the Laplacian for connected graphs without loops and multiple edges. To

begin, we consider the matrix L, defined as follows:

L(u, v) =







d(v), if u = v,
−1, if u and v are adjacent,
0, otherwise.

Let T = diag{d(v1), d(v2), . . . , d(vp)}. The Laplacian of G is defined to be the matrix

L̃(u, v) =











1, if u = v,
− 1√

d(v)d(u)
, if u and v are adjacent,

0, otherwise.

It is clear that for a connected graph having at least one edge

L̃ = T−1/2LT−1/2.
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The matrix L̃ can be considered as an operator on the space of functions f : V (G) → R
which satisfies

L̃f(u) =
1

√

d(u)

∑

v∼u

(

f(u)
√

d(u)
− f(v)

√

d(v)

)

.

If G is k-regular then

L̃ = I − 1

k
A,

where A is the adjacency matrix. For a general connected graph

(2.3) L̃ = I − T−1/2AT−1/2.

3. Cyclically connected graphs

In this section the directions of edges are arbitrary.
We consider the following problem generated by the Sturm-Liouville equations on a

cyclically connected graph

(3.1) −y′′j + qj(x)yj = λyj

with continuity conditions: if i ∈ K then

(3.2)
yji(l) = yhi

(l) = yki
(0) = yri(0)

for all ji ∈ W+
i , hi ∈ W+

i and all ki ∈ W−
i , ri ∈ W−

i

and Kirchhoff’s condition

(3.3)
∑

j∈W+
i

y′j(l) =
∑

j∈W−

i

y′j(0), i ∈ K.

Here and below we have 0 instead of the corresponding sum if W+
i = ∅ or W−

i = ∅.
Problem (3.1)–(3.3) is the main one in this Section. Let us notice that in a cyclically

connected graph all the vertices are interior.
The following theorem was proved in [21] for the general case of edges of different

lengths.

Theorem 3.1. The maximal multiplicity of an eigenvalue of problem (3.1)–(3.3) on a
cyclically connected graph is µ+ 1.

Remark 3.2. In the proof of this theorem in [21] it was shown that if qj(x) ≡ 0 for all
j = 1, 2, . . . , g then λ = ( 2πl )

2 is an eigenvalue of multiplicity µ+ 1 = g − p+ 2.

Assumption. In what follows we assume the potentials on the edges are the same, i.e.

q1(x) ≡ q2(x) ≡ · · · ≡ qg(x)
def
= q(x) and symmetric with respect to the midpoint

q(l − x)
a.e.
= q(x).

Denote by s(λ, x) and c(λ, x) the solutions of (3.1) which satisfy the conditions s(λ, 0) =
s′(λ, 0)− 1 = c′(λ, 0) = c(λ, 0)− 1 = 0. From now on we consider symmetric potentials.

It is known (see e.g. [27], Proposition 2.1) that under this assumption

(3.4) s′(λ, l) = c(λ, l)

and consequently

c′(λ, l)s(λ, l) = c2(λ, l)− 1.

Following [11], [3], [25], [26] we introduce the solutions to (3.1):

(3.5) fj(λ, x) =
fj(l)− fj(0)c(λ, l)

s(λ, l)
s(λ, x) + fj(0)c(λ, x),
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where j is the index of an edge. Here it is assumed that λ is such that s(λ, l) 6= 0. It is
clear that

(3.6) fj(λ, 0) = fj(0), fj(λ, l) = fj(l).

If s(λ, l) 6= 0, any solution on an edge ej can be presented in the form of (3.5). Continuity
conditions at a vertex vi with incoming edges ej (j = j+1 , j+2 , . . . , jd+(vi)) and outgoing

edges ej (j = j−1 , j−2 , . . . , j−d−(vi)
) are

fj+1
(λ, l) = fj+2

(λ, l) = · · · = fj+
d+(vi)

(λ, l) = fj−1
(λ, 0) = fj−2

(λ, 0) = · · · = fj−
d−(vi)

(λ, 0)

or due to (3.6)

fj+1
(l) = fj+2

(l) = · · · = fj+
d+(vi)

(l) = fj−1
(0) = fj−2

(0) = · · · = fj−
d−(vi)

(0)
def
= Φ(vi).

The Kirchhoff condition at vi is

j+
d+(vi)
∑

j=j+1

f ′
j(λ, l)−

j−
d−(vi)
∑

j=j−1

f ′
j(λ, 0) = 0

or

(3.7)

j+
d+(vi)
∑

j=j+1

fj(l)s
′(λ, l)− fj(0)

s(λ, l)
−

j−
d−(vi)
∑

j=j−1

fj(l)− fj(0)c(λ, l)

s(λ, l)
= 0.

Taking into account (3.4) and s(λ, l) 6= 0 we arrive at

(3.8) c(λ, l)d(vi)Φ(vi)−
∑

vj∼vi

Φ(vj) = 0,

where the sum is taken over all the vertices vj adjacent with vi. Equation (3.8) is the
vector equation

(3.9) zBF −AF = 0,

where we introduce z = c(λ, l), F = {Φ(v1),Φ(v2), . . . ,Φ(vp)}, B = diag{d(v1), d(v2),
. . . , d(vp)} and A is the adjacency matrix.

Since we exclude isolated vertices and, therefore B > 0, equation (3.9) can be written
in the form

(3.10) (zI − Ã)F = 0,

where Ã = B−1/2AB−1/2. The spectrum of Ã consists of p (with account of multipli-
cities) eigenvalues. Thus, if s(λk, l) 6= 0, then λk is an eigenvalue of problem (3.1)–(3.3)
if and only if c(λk, l) = αi, where αi (i = 1, 2, . . . , p) are the zeros of the polynomial

Pp(z) = det(zI− Ã) of degree p, i.e. the eigenvalues of the matrix Ã, i.e. the eigenvalues

of the adjacency matrix A. Let us notice that due to (2.3) αk is an eigenvalue of Ã if
and only if τk = 1−αk is an eigenvalue of the discrete Laplacian (see (2.3)). This means
that the characteristic function is

(3.11) φ(λ) = sg−p(λ, l)Pp(c(λ, l)),

where Pp(z) is a polynomial of degree p.

Theorem 3.3.

φ(λ) = sg−p(λ, l)(c(λ, l)− 1)P̃p−1(c(λ, l)),

where P̃p−1(z) is a polynomial of degree p− 1 with P̃p−1(1) 6= 0.

Proof. Let q(x) ≡ 0 then s(λ, l) = sin
√
λl√

λ
and c(λ, l) = cos

√
λl equation (3.11) implies

φ(λ) = b

(

sin
√
λl√

λ

)g−p p
∏

k=1

(αk − cos
√
λl),



194 V. PIVOVARCHIK AND O. TAYSTRUK

where b is a nonzero constant.
According to Theorem 3.1 and Remark 3.2 φ(λ) must have a zero of multiplicity

g − p+ 2 at λ = ( 2πl )
2. That means αp = 1 and αk 6= 1 for k 6= p.

It is known [6] that the eigenvalues of the discrete Laplacian satisfy the conditions
Imτk = 0, 0 ≤ τk ≤ 2 and, therefore, Imαk = 0 and |αk| ≤ 1. These results follow
also from the fact that the corresponding operator L is self-adjoint and, therefore, its
eigenvalues are real and, consequently, the zeros of φ(λ) must be real and, therefore,
Imαk = 0 and |αk| ≤ 1 �

Theorem 3.4. If in addition the graph is bipartite then

φ(λ) = sq−p(λ, l)(c2(λ, l)− 1)cm(λ, l)Q p−m

2 −1(c
2(λ, l)),

where m ∈ N ∪{0}, m+p is even number, Q p−m

2 −1(z) is a polynomial of degree p−m
2 −1.

Proof. Equip the vertices with values 1 or −1 in such way that each edge is directed from
a vertex valued with 1 to a vertex valued with −1. It is possible to do for any bipartite
graph. Let the potential q(x) ≡ 0. Then λ = (πl )

2 is an eigenvalue with the eigenfunction
constructed as follows. We direct the edges of the graph from the vertices valued 1 to
the vertices valued −1. Then we consider a vector-function {cos πx

l , cos πx
l , . . . , cos πx

l }T .
It is easy to see that this is the eigenvector corresponding to the eigenvalue λ = (πl )

2.

Since cos
√
λl
∣

∣

∣√
λ=π/l

= −1, we conclude that α1 = −1.

Now we can use Lemma 1.8 (iii) from [6] to show that φ(λ)sp−g(λ, l) is a polynomial
in c2(λ, l) �

Corollary 3.5. Let G be a cyclically connected not bipartite equilateral graph which is
not a simple cycle with the same symmetric potential on the edges.

(3.12) p = g −m(λg),

where by m(λk) we denote the multiplicity of λk.

Proof. Since the lowest nonnegative solution of the equation c(λ, l) = αk for αk ∈ (−1, 1]
is less than the lowest positive zero of s(λ, l) we have

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λp < λp+1 = λp+2 = · · · = λg < λg+1 ≤ · · ·
�

Remark 3.6. A method of [14] allows to find cyclomatic number for an arbitrary graph
but the corresponding formula is very complicated and involves all the eigenvalues. In
our simple case we can find the cyclomatic number as µ = g − p + 1. The number of
edges can be obtained from asymptotic formula (Weyl’s law)

g =
π

l
lim
k→∞

k

λk

(see for example [14]) while p from (3.12).

Remark 3.7. Let G be a not bipartite cyclically connected graph which is not a simple
cycle. Then the sequence {λkg}∞−∞, k 6=0 is the set of zeros of s(λ, l). Since the potential
is symmetric with respect to the midpoint, this sequence is uniquely determines the
potential. Moreover, s(λ, l) = 2s(λ, l/2)s′(λ, l/2) and {λ(2k−1)g}∞−∞ is the set of zeros
of s′(λ, l/2) and {λ2kg}∞−∞, k 6=0 is the set of zeros of s(λ, l/2). Thus, we can recover the

potential on the interval (0, l/2) using these two sequences according to the procedure
in [23].

Examples

1. For the tetrahedron graph Theorem 3.3 gives

φ(λ) = bs2(λ, l)(c(λ, l)− 1)P3(c(λ, l)),
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where b is a nonzero constant. A tetrahedron is invariant under the group of symmetry C3

therefore it have three linearly independent eigenvectors corresponding to each eigenvalue
λk which satisfies inequalities s(λk, l) 6= 0 and c(λk, l) 6= 1. That means P3(c(λ, l)) =
(c(λ, l)− α)3. Using Lemma 1.7 of [6] we obtain that the sum of zeros of (z − 1)P3(z) is
0, i.e. 3α+ 1 = 0. Therefore,

φ(λ) = bs2(λ, l)(c(λ, l)− 1)(c(λ, l) + 1/3)3.

2. Let us consider an octahedron. In this case Theorem 3.3 gives

φ(λ) = bs6(λ, l)(c(λ, l)− 1)P5(c(λ, l)).

Choose a square cross-section of the octahedron and equip its vertices with values 0.
One of the two vertices which remain equip with 1 and the last vertex with −1. Let us
construct a vector-function on the edges directed from the vertex of value 1 to the vertices
of zero value we choose yj = cos πx

l , on the edges directed from the vertex of value −1 to
the vertices of zero value we choose yj = − cos πx

l , on the rest of edges we choose yj ≡ 0.

The constructed vector is an eigenvector corresponding to the eigenvalue λ = (πl )
2. It

is clear that this eigenvalue is of multiplicity 3 because there are three possibilities to
choose the diagonal equipped with ±1. This means that P5(c(λ, l)) = c3(λ, l)P2(cosλ, l).
Due to the symmetry of an octahedron we conclude that P2(z) = (z − β)2. Again using
Lemma 1.7 of [6] we obtain β = − 1

2 and

φ(λ) = bs6(λ, l)(c(λ, l)− 1)c3(λ, l)(c(λ, l) + 1/2)2.

3. For the cube graph using Theorem 3.4 and the symmetry of the problem we obtain

φ(λ) = bs4(λ, l)(c2(λ, l)− 1)(c2(λ, l)− 1/9)3,

where b is a nonzero constant.

4. Connected graphs with Neumann conditions at pendant vertices

Now we consider a connected graph which can have pendant vertices. Let the boundary
conditions at the pendant vertices be

y′j(l) = 0, j ∈ J.

In this case equation (3.11) remains true.
For a tree g − p = −1 and (3.11) takes on the form

φ(λ) = s−1(λ, l)Pp(c(λ, l)).

Since trees are bipartite, Theorem 3.4 implies
Theorem 4.1. For a tree with the Neumann conditions at the pendant vertices

φ(λ) = s−1(λ, l)(c2(λ, l)− 1)cm(λ, l)Q p−m

2 −1(c
2(λ, l))

= c′(λ, l)cm(λ, l)Q p−m

2 −1(c
2(λ, l)),

where m ∈ N ∪{0}, m+p is even number, Q p−m

2 −1(z) is a polynomial of degree p−m
2 −1.

Example. For a star graph

φ(λ) = b(s(λ, l))−1(c2(λ, l)− 1)cp−2(λ, l) = c′(λ, l)cp−2(λ, l).

5. Connected graphs with the Dirichlet conditions at pendant vertices

Now let us assume that the Dirichlet conditions are imposed at r of pendant vertices.
Of course, in this case instead of conditions (2.1) one must impose fj(0) = 0 (fj(l) = 0)
at these vertices in the definition of operator L. It is clear that the operator remains
selfadjoint.

Theorem 5.1. If the Dirichlet conditions are imposed at r of pendant vertices then

(5.1) φ(λ) = sg−p+r(λ, l)Pp−r(c(λ, l)),
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where Pp−r(z) is a polynomial of degree p− r.

Proof. Let the Dirichlet boundary condition be imposed at a pendant vertex vj1 instead
of equation (3.9) with j = j1 we have fj1(0) = 0 or fj1(l) = 0. In both cases instead of
(3.10) we have

(zR− Ã1)F = 0,

where R = diag{d(v1), d(v2), . . . , d(vj1−1), 0, d(vj1+1), . . . , d(vp)}. Thus, the characteris-

tic polynomial, i.e. det(zR−Ã1) is of degree p−1. If the Dirichlet conditions are imposed
at r pendandant vertices then the degree of this polynomial is p − r and, consequently,
(5.1) is true. �

Theorem 5.2. If the Dirichlet conditions are imposed at r of pendant vertices and the
graph is bipartite then

φ(λ) = sg−p+r(λ, l)cm(λ, a)P p−r−m

2
(c2(λ, l)),

where P p−r−m

2
(z) is a polynomial of degree p−r−m

2 .

Proof. To prove this theorem it is enough to use Theorem 5.1 and again Lemma 1.8 (iii)
of [6]. �

Example. In [27] a rooted equilateral tree with the Dirichlet conditions at all the
pendant vertices is considered. The root is of degree 2, all the other interior vertices of
degree 3 and the combinatorial distance n from the root to each of the pendant vertex
is the same. There the following result is obtained by direct calculations:

For each natural n > 1

φn(λ) = smn(λ, l)cxn(λ, l)Pd(c
2(λ, l)),

where

mn = 2n − 1,

xn =











1

3
(2n − 1), if n even,

2

3
(2n−1 − 1) + 1, if n odd

and Pd(z) is a polynomial of degree d = 1
2 (2

n+1 − 2 − mn − xn). Description of these
polynomials can be found in [27].

This result meets Theorem 5.2 of the present paper.
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