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CHAPTER 2. RECURRENCE RELATIONS 

§ 2.1. Some examples 

Let's consider sequences of numbers and the ways they can be defined. If we 

know how to calculate the element of the sequence 𝑎𝑛 for each value of 𝑛, then such 

a sequence is called an explicit sequence. Often, a sequence is set explicitly using a 

formula for calculating a sequence member depending on its number. For example, 

a sequence of non-negative rational numbers given by the formula 𝑎𝑛 =
1

𝑛
, with 𝑛 =

4 gives 𝑎4 =
1

4
. However, explicitly specifying a sequence is not always convenient 

for solving problems. There is a way to recurrently specify the sequence: each 

element of the sequence is calculated by its number and one or more preceding 

elements of this sequence. For example, we can define a factorial in a recursive way 

as follows: 

𝑛! = (𝑛 − 1)! ∙ 𝑛 for 𝑛 > 0 with the initial condition 0!=1. 

It is clear that to calculate any element of a sequence using a given recurrence 

relation, you need to calculate all its preceding elements. 

 

Example 1: Hanoi Towers. 

Let's start with the famous puzzle problem invented by the French 

mathematician Edouard Lucas in 1883. The problem was as follows: three rods are 

given, one of which has eight discs of different sizes strung on it, and always a 

smaller disc lies on top of a larger one. The task is to move the pyramid of eight 

discs in the least number of moves to another rod. Only one disc is allowed to be 

moved at a time, and you cannot place a larger disc on top of a smaller one.  

The legend of Professor Lukas’ puzzle reads that ‘in the Great Temple of 

Benares, under the cathedral that marks the centre of the world, there is a bronze 

disc on which are fixed three diamond rods, one cubit high and as thick as a bee. A 

long time ago, at the very beginning of time, the monks of this monastery were in 

debt to the god Brahma. Angry, Brahma built three tall rods and placed 64 discs of 

pure gold on one of them. Each smaller disc lay on top of the larger one. As soon as 
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all 64 discs are transferred from the rod on which Brahma put them when he created 

the world to another rod, the tower and the temple will turn to dust and the world 

will perish with thunder.’ It is usually suggested to estimate the complexity of the 

solution. 

As we will show below, the number of movements is  𝑎𝑛 = 2
64 − 1 =

18446744073709551615  and, if we move the discs one time per second, the 

required movements would require 5,82 ∙ 1011 actions, i.e. the monks' work would 

last 584 billion years. 

 

 

Figure 1. Hanoi towers (6 discs) 

We will consider the solution to the problem in the general case when instead 

of eight discs, we will be moving n discs. 

There are n discs of different diameters with holes in the centres and three 

vertical rods on which to place the discs. Initially, all the discs are on the same rod, 

ordered by size, with the largest at the bottom, forming a tower. The goal is to move 

the discs one by one to get the same tower on another rod. At no time should a disc 



6 

 

of a larger diameter lie on a disc of a smaller diameter. What is the minimum number 

of actions required? 

Let's denote by 𝑎𝑛 the required minimum number of actions to be performed. 

It is clear that 𝑎1 = 1 and 𝑎2 = 3. How do we find 𝑎𝑛? Obviously, in order to move 

the lowest disc, you need an empty rod on which to place the lowest disc. Therefore, 

the n-1st disc must be placed on the third rod. This requires 𝑎𝑛−1 actions. Next, we 

move the lowest disc from the first rod to the second rod and then we need 𝑎𝑛−1  

more actions to move all the other discs from the third rod to the second rod. Thus, 

𝑎𝑛 = 2𝑎𝑛−1 + 1. 

This recurrent relation 𝑎𝑛 = 2𝑎𝑛−1 + 1 together with the initial condition 𝑎1 =

1 makes it possible to find 𝑎𝑛. 

We have, 𝑎2 = 2 ∙ 1 + 1 = 3, 𝑎3 = 2 ∙ 3 + 1 = 7, 𝑎4 = 2 ∙ 7 + 1 = 15… 

Note that 𝑎2 = 3 = 2
2 − 1,  𝑎3 = 7 = 2

3 − 1, etc. Using the method of 

mathematical induction, it is easy to prove that 𝑎𝑛 = 2
𝑛 − 1. 

Such a reasoning in the process of solving the Hanoi Towers problem, on the 

other hand, can be called recursive: the process (‘moving n discs’) contains itself 

(‘moving n-1 disc’) and contains a condition (‘moving the lowest disc to the empty 

second rod in only one move’) that can be used to determine when the task is 

complete. This condition is called a basic or nonrecursive condition. 

Some functions also allow for a recursive definition, although they can be 

defined directly. 

The possibility of a recursive function definition is not always obvious. For 

example, the function 𝑓(𝑛) = 𝑎𝑛, 𝑛 ∈ 𝑁, allows the following recursive definition 

𝑓(0) = 1,      𝑓(𝑘 + 1) = 𝑎 ∙ 𝑓(𝑘), 𝑘 ∈ 𝑁. 

The first condition is the basic one. 

The recursive algorithm for solving problems is often and effectively used in 

many languages and environments of programming.  

In programming, recursion means calling a function or procedure from itself, 

directly (simple recursion) or through other functions (complex or indirect 
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recursion). The number of nested calls to a function or procedure is called the depth 

of recursion. The use of recursion can be structurally simpler and more visual, 

especially if the programming language syntax does not contain cyclic structures for 

organising repetitive calculations. However, you should avoid using a large depth of 

recursion in recursive programs. 

It should be noted that if the organisation of data processing is arranged in such 

a way that actions are repeated many times, but do not lead to challenges of their 

own, this is iteration (in the broad sense). In a narrow sense, an iteration is a single 

step in a cyclic process. In mathematics, iteration is the repeated application of any 

mathematical operation. 

Example 2. There are  3𝑛 n-digit sequences with each digit equal to 0, 1 or 2. 

How many of them have an odd number of zeros?  

Let 𝑏𝑛denote the number of such sequences of length 𝑛 that have an odd 

number of zeros. Each such sequence ends in 0, 1 or 2. A sequence ending in 1 has  

𝑏𝑛−1 possible sequences preceding the last 1. Similarly, there are  𝑏𝑛−1 sequences 

ending in 2. If the sequence ends in 0, then this 0 must be preceded by a sequence of 

length 𝑛 − 1  with an even number of zeros, but the number of such sequences is  

3𝑛−1 (the total number of sequences of length 𝑛 − 1 ) minus  𝑏𝑛−1 (the number of 

sequences of length 𝑛 − 1  with an odd number of zeros). Thus, there are  3𝑛−1 −

𝑏𝑛−1 sequences of length n with an odd number of zeros that have 0 at the end. By 

the principle of addition, we have  

𝑏𝑛 = 𝑏𝑛−1 + 𝑏𝑛−1 + 3
𝑛−1 − 𝑏𝑛−1, i.e., 𝑏𝑛 = 𝑏𝑛−1 + 3

𝑛−1. 

We can find   𝑏𝑛 by iteration:  

𝑏𝑛 = 3
𝑛−1 + 𝑏𝑛−1 = 3

𝑛−1 + (3𝑛−2 + 𝑏𝑛−2) = ⋯ 

… = 3𝑛−1 + 3𝑛−2 +⋯+ 3 + 𝑏1. 

But  𝑏1 = 1, so that 𝑏𝑛 = 1 + 3+. . . +3
𝑛−1 =

1

2
(3𝑛 − 1). 

Example 3: Paving a garden path.  

The garden path is 2 meter  wide and n meter long. The stones for paving are 1 

meter by 2 meter 
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. Find the number of ways to pave the path. 

Let 𝑝𝑛 denote the number of ways to pave a path of size 2 х n. 

It is clear that  𝑝1 = 1. It is also clear that 𝑝2 = 2  (see Figure 1.a), and the 

value of 𝑝3 = 3  (see Figure 1.b). 

  

a) б) 

Fig. 1. The number of ways to pave a path of two or three stones 

It may seem that  𝑝𝑛 = 𝑛, but this is not the case (see below). For a 2 х n path 

(n>2), paving should begin with one of the methods shown in Fig. 2. 

  

Fig. 2. Possible ways to start paving a path 2 х n 

In the first case, there are 𝑝𝑛−1 ways of further paving, and in the second case, 

there are 𝑝𝑛−2. By the principle of addition 

 pn = pn−1 + pn−2  (𝑛 ≥ 3). 

This is a 2nd order recurrence relation, since each number of ways is expressed in 

terms of the preceding two. We get 

𝑝4 = 3 + 2 = 5,   𝑝5 = 5 + 3 = 8,   𝑝6 = 5 + 8 = 13,   𝑝7 = 13 + 8 = 21, etc. 

 This is the well-known Fibonacci sequence (𝐹𝑛): 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … 

Example 4. Colouring the flag.  

The flag consists of 𝑛 horizontal stripes, each stripe can be either red, blue or 

white, and adjacent stripes must not be of the same colour. Under these conditions, 

the topmost stripe can be any of three colours, the second can be two colours, the 

third can be two colours, etc. (the colour of a stripe must not be the same as the 

colour of the stripe above it). Thus, there are 

3 ∙ 2𝑛−1 possible colouring options. 

1 𝑛 − 1 
2 𝑛 − 2 
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Now let's imagine that in order to avoid confusing the bottom and top, the 

bottom and top stripes should be different colours. Let 𝑎𝑛 denote the number of such 

flags with 𝑛 stripes. Then 𝑎1 = 0, and 𝑎2 = 6. Furthermore, since there is a one-to-

one correspondence between flags with 𝑛 stripes, where the top and bottom stripes 

are the same colour, and flags with 𝑛 − 1 stripes, where the bottom stripe is different 

from the top stripe,   𝑎𝑛 = 3 ∙ 2
𝑛−1 − 𝑐𝑛, where 𝑐𝑛 is the number of flags with n 

stripes with the same colour of the bottom and top stripes. Note that the number of 

flags of 𝑛 stripes with the same colour of the bottom and top stripes is equal to the 

number of flags of 𝑛 − 1 stripes with different colours of the bottom and top stripes 

(the bottom strip of a flag of 𝑛 − 1 stripes must not be the same colour as the 𝑛-th 

strip of a flag of n stripes). Thus, 𝑐𝑛 = 𝑎𝑛−1.   

Therefore, 𝑎𝑛 = 3 ∙ 2
𝑛−1 − 𝑎𝑛−1. Because from here 𝑎𝑛 + 𝑎𝑛−1 = 3 ∙ 2

𝑛−1, 

we also have 𝑎𝑛−1 + 𝑎𝑛−2 = 3 ∙ 2
𝑛−2. Thus, 

2(𝑎𝑛−1 + 𝑎𝑛−2) = 3 ∙ 2
𝑛−1 = 𝑎𝑛 + 𝑎𝑛−1, 

and  𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2. 

The result is a recurrence relation of the 2nd order. Now we will see how it can 

be solved. 

§ 2.2. Solving recurrence relations using the characteristic equation 

There are two main methods used to solve recurrence relations: 

1) solving with the help of a characteristic equation; 

2) solving with the help of a generating function. 

 In this section, we will consider solving recurrence relations using the 

characteristic equation. This method almost completely coincides with the method 

of solving linear differential equations with constant coefficients. 

Definition. A recurrent relationship described by an equation of the form            

𝑎𝑛 = В1𝑎𝑛−1 + В2𝑎𝑛−2 +⋯+ В𝑘𝑎𝑛−𝑘, 𝑛 ≥ 𝑘,                             (2.1) 

is called a homogeneous linear recurrence relation of the k-th order with constant 

coefficients.  
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The constants present in this equation, В1, В2, … , В𝑘,  are called the coefficients 

of the equation. 

To get a more familiar form of the homogeneous equation, we move all the 

terms of equation (2.1) to the left side and redesignate the coefficients: 

     𝑎𝑛 + 𝐴1𝑎𝑛−1 + 𝐴2𝑎𝑛−2 +⋯+ 𝐴𝑘𝑎𝑛−𝑘 = 0, 𝑛 ≥ 𝑘.                           (2.2) 

For example, a geometric progression is defined by a linear homogeneous 

recurrence relation of the 1st order using the equation:  

𝑢𝑛+1 = 𝑞𝑢𝑛. 

An arithmetic progression is defined by a linear homogeneous recurrence 

relationship of the 2nd order. Indeed, if we consider two relations written for two 

neighbouring values of n:  

𝑢𝑛+2 = 𝑢𝑛+1 + 𝑑      and      𝑢𝑛+1 = 𝑢𝑛 + 𝑑, 

then we will obtain from them by subtracting: 

𝑢𝑛+2 − 𝑢𝑛+1 = 𝑢𝑛+1 − 𝑢𝑛, 

or 

𝑢𝑛+2 = 2𝑢𝑛+1 − 𝑢𝑛. 

Definition. An algebraic equation of the form  

          𝑥𝑘 + 𝐴1𝑥
𝑘−1 + 𝐴2𝑥

𝑘−2 +⋯+ 𝐴𝑘 = 0                                                    (2.3) 

is called the characteristic equation of the linear homogeneous recurrence relation 

(2.2). 

Remark. It is obvious that for the linear homogeneous recurrence relation 

(3.1), the characteristic equation will be of the form 

         𝑥𝑘 = В1𝑥
𝑘−1 + В2𝑥

𝑘−2 +⋯+ В𝑘.                                                           (2.4) 

According to the fundamental theorem of algebra, the characteristic equation 

(2.3) has k roots (real or complex). These roots play a decisive role in finding a 

sequence that corresponds to a given recurrence relation. In the following, we will 

focus on cases where the characteristic equation has only real roots. We will not 

consider the case of complex roots.  
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Taking the example of a linear homogeneous recurrence relation of the 2nd 

order   

                         𝑎𝑛 = 𝐴𝑎𝑛−1 + 𝐵𝑎𝑛−2, (𝑛 ≥ 3),                                                 (2.5)                     

where A and B are constant values,  𝐵 ≠ 0   and  𝑎1 і  𝑎2 are given, we will justify 

the method of solving the problem using the characteristic equation. 

First, are there any real numbers 𝛼 ≠ 0 such that the equality 𝑎𝑛 = 𝛼
𝑛   satisfies 

(2.5)?  Substituting 𝑎𝑛 = 𝛼
𝑛 into the relation (2.5), we obtain  

𝛼𝑛 = 𝐴𝛼𝑛−1 + 𝐵𝛼𝑛−2, 

i.e.  

𝛼𝑛−2(𝛼2 − 𝐴𝛼 − 𝐵) = 0. 

Hence, either 𝛼 = 0, but this is possible only if  𝑎1 = 0  and  𝑎2 = 0,  (in this 

case,  𝑎𝑛 = 0)   or 𝛼2 − 𝐴𝛼 − 𝐵 = 0.  

Thus, if 𝑎1 ≠ 0 or 𝑎2 ≠ 0 , then 𝑎𝑛 = 𝛼
𝑛 is a solution to equation (2.5) in those 

cases and only those cases when α is a solution to the auxiliary (characteristic) 

equation  

                                             𝑥2 = 𝐴𝑥 + 𝐵 .                                                        (2.6)           

As a consequence, if 𝛼 and  𝛽  –  are different roots of equation (2.6), then 𝑎𝑛 = 𝛼
𝑛 

and  𝑎𝑛 = 𝛽
𝑛 are both solutions of equation (2.5).  

        If the auxiliary equation has a multiple root of α, then 

𝑥2 − 𝐴𝑥 − 𝐵 = (𝑥 − 𝛼)2 = 𝑥2 − 2𝛼𝑥 + 𝛼2 ,    𝐴 = 2𝛼, 𝐵 = −𝛼2. 

In this case, 𝑎𝑛 = 𝑛𝛼
𝑛 also satisfies equation (2.5), since 

𝐴𝑎𝑛−1 + 𝐵𝑎𝑛−2 = 𝐴(𝑛 − 1)𝛼
𝑛−1 + 𝐵(𝑛 − 2)𝛼𝑛−2 = 

= 2(𝑛 − 1)𝛼𝑛 − (𝑛 − 2)𝛼𝑛 = 𝑛𝛼𝑛 = 𝑎𝑛. 

Let us consider two theorems that describe the structure of a general solution 

to a homogeneous linear recurrence relation of the k--th order, depending on the type 

of roots of the characteristic equation. 

Theorem 2.1 If the characteristic equation of a homogeneous recurrence relation of 

the k-th order has k different roots 𝜆1, 𝜆2,…,  𝜆𝑘, then the general solution of the 

homogeneous recurrence relation has the form: 

𝑎𝑛 = 𝐶1𝜆1
𝑛 + 𝐶2 𝜆2

𝑛 +⋯+ 𝐶𝑘  𝜆𝑘
𝑛 , 
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where С1, С2, … , С𝑘  – are arbitrary constants. 

Remark. To determine the constants С1, С2, … , С𝑘 (finding a partial solution of 

the recurrence relation), it is necessary to specify k initial conditions, i.e., specify k 

elements of the sequence  𝑎1, 𝑎2,…,  𝑎𝑘. 

Theorem 2.2. If the characteristic equation of a homogeneous recurrence relation of 

order k has a root λ of multiplicity  k, the general solution of the homogeneous 

recurrence relation has the form: 

𝑎𝑛 = (С1 + 𝐶2𝑛 +⋯+ 𝐶𝑘  𝑛
𝑘−1)𝜆𝑛 , 

where С1, С2, … , С𝑘  – arbitrary constants. 

We will prove the theorems for the case k=2. For other values of  k , the proofs 

are analogous. 

Theorem 2.3. Let the sequence {𝑎𝑛} satisfy equation (2.1), the initial values 𝑎1 та 

𝑎2 be defined, α and β be the roots of the characteristic equation of the sequence, 

then:  

1) if 𝛼 ≠ 𝛽  (the roots are real and distinct), then there exist constants  𝐾1 і 𝐾2 

such that 

 𝑎𝑛 = 𝐾1𝛼
𝑛 + 𝐾2𝛽

𝑛  for all 𝑛 ≥ 1; 

2) if 𝛼 = 𝛽  (multiple root), then there exist constants  𝐾3 і 𝐾4 such that 𝑎𝑛 =

(𝐾3 + 𝑛𝐾4)𝛼
𝑛 for all  𝑛 ≥ 1. 

Proof 

1) Let's choose  𝐾1 і 𝐾2 so that 𝑎1 = 𝐾1𝛼 + 𝐾2𝛽, 𝑎2 = 𝐾1𝛼
2 + 𝐾2𝛽

2, that is, 

let's take  𝐾1 =
𝑎1𝛽−𝑎2

𝛼(𝛽−𝛼)
, 𝐾2 =

𝑎1𝛼−𝑎2

𝛽(𝛼−𝛽)
.                                             

Then, obviously, the statement of the theorem is valid for 𝑛 = 1, 2. Next, we 

apply induction. 

Let the statement be true for every 𝑛 ≤ 𝑘.  Then 

𝑎𝑘+1 = 𝐴𝑎𝑘 + 𝐵𝑎𝑘−1 = 𝐴(𝐾1𝛼
𝑘 + 𝐾2𝛽

𝑘) + 𝐵(𝐾1𝛼
𝑘−1 + 𝐾2𝛽

𝑘−1)

= 𝐾1𝛼
𝑘−1(𝐴𝛼 + 𝐵) + 𝐾2𝛽

𝑘−1(𝐴𝛽 + 𝐵) = 𝐾1𝛼
𝑘+1 + 𝐾2𝛽

𝑘+1. 

Statement 1)  is proven. 
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2) Let's choose 𝐾3 і 𝐾4  so that 𝑎1 = (𝐾3 + 𝐾4)𝛼  and  𝑎2 = (𝐾3 + 2𝐾4)𝛼
2, that 

is, so that 𝐾3 =
2𝑎1𝛼−𝑎2

𝛼2
, 𝐾4 =

𝑎2−𝑎1𝛼

𝛼2
.   

     Then the statement that 𝑎𝑛 = (𝐾3 + 𝑛𝐾4)𝛼
𝑛, is obviously valid for the values 

𝑛 = 1,2.  

     Let's assume it is true for every 𝑛 ≤ 𝑘. Then we have that 

𝑎𝑘+1 = 𝐴𝑎𝑘 + 𝐵𝑎𝑘−1 = 𝐴(𝐾3 + 𝑘𝐾4)𝛼
𝑘 + 𝐵(𝐾3 + (𝑘 − 1)𝐾4)𝛼

𝑘−1

= 𝐾3𝛼
𝑘−1(𝐴𝛼 + 𝐵) + 𝐾4𝛼

𝑘−1(𝐴𝑘𝛼 + 𝐵(𝑘 − 1))

= 𝐾3𝛼
𝑘+1 + 𝐾4𝛼

𝑘−1(2𝑘𝛼2 − 𝛼2(𝑘 − 1))

= 𝐾3𝛼
𝑘+1 + 𝐾4(𝑘 + 1)𝛼

𝑘+1. 

Statement 2) is proven. 

       A description of these cases can be found in [6]. The case of complex roots of 

equation (2.6) is considered in [2, 3]. 

 

Example 4 (continued). In the problem about flags, we obtained the recurrence 

relation 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2,    where   𝑎1 = 0, 𝑎2 = 6.  

The corresponding characteristic equation has the form:  

𝑥2 − 𝑥 − 2 = 0. 

This equation has two different roots 𝛼 = −1, 𝛽 = 2. Therefore, we write the 

general solution of the recurrence relation as follows: 

𝑎𝑛 = 𝐾1(−1)
𝑛 + 𝐾22

𝑛, 

where 𝐾1 і 𝐾2 can be determined from the initial conditions: 

{
0 = −𝐾1 + 2𝐾2
6 = 𝐾1 + 4𝐾2

, 

so that we obtain 𝐾1 = 2,𝐾2 = 1.  

Therefore, 

𝑎𝑛 = 2(−1)
𝑛 + 2𝑛. 

 

Example 5. The Fibonacci sequence is given as follows: 

𝐹1 = 1, 𝐹2 = 2, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2,   (𝑛 ≥ 3). 
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The corresponding characteristic equation 

𝑥2 − 𝑥 − 1 = 0 

has the roots  
1

2
(1 ± √5),  so 𝐹𝑛 = 𝐾1𝛼

𝑛 + 𝐾2𝛽
𝑛, where 𝛼 =

1

2
(1 + √5),   𝛽 =

1

2
(1 − √5).  

Substituting these into the initial conditions, we get 

{
 
 

 
 1 = 𝐾1 (

1 + √5

2
) + 𝐾2 (

1 − √5

2
) ,

2 = 𝐾1 (
1 + √5

2
)

2

+ 𝐾2 (
1 − √5

2
)

2

.

 

Therefore, 𝐾1 =
𝛼

√5
  and  𝐾2 = −

𝛽

√5
,  so that 

𝐹𝑛 =
1

√5
𝛼𝑛+1 −

1

√5
𝛽𝑛+1 =

1

√5
((
1+√5

2
)
𝑛+1

− (
1−√5

2
)
𝑛+1

).                              (2.7) 

This is the so-called Binet formula. 

It may seem strange to have irrationalities in the formula for the 𝑛-th term of 

the sequence, since the Fibonacci numbers are integers, however, when the 

expression is transformed, irrationalities disappear. 

It is known that    
 𝐹𝑛+1

 𝐹𝑛
→

1+√5

2
. Number 

1+√5

2
  called the golden ratio.   

The golden ratio is a proportional division of a segment into unequal parts in which 

the length of the entire segment is related to the length of the larger part as the length 

of the larger part is related to the length of the smaller part. 

 

 

𝑎

𝑏
=
𝑎 + 𝑏

𝑎
=
1 + √5

2
= 1,618…  

The golden ratio can often be found in nature: in the structure of a sunflower, a 

mollusk shell, a spider web, a DNA molecule, etc. 

       a                                 b 
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It is generally accepted that 

the concept of the golden ratio was 

introduced into mathematics by 

Pythagoras (c. 570-490 BC), an 

ancient Greek philosopher and 

mathematician. It is believed that 

he borrowed the concept of the 

golden ratio from the Egyptians, 

who used the golden ratio in the 

construction of pyramids, temples, 

bas-reliefs, household items and jewelry.   

The ancient Greek philosopher Plato (427-347 BC) also knew about the 

division of a segment in the golden ratio. 

The facade of the ancient Greek temple of the Parthenon contains the golden 

ratio. During its excavations, compasses used by architects and sculptors of the 

ancient world were discovered. 

In ancient literature, the golden ratio is mathematically described in Euclid's 

“Principles” (about 325 - about 270 BC). The second book of "Principles" gives a 

geometric construction of the golden ratio. This number is found in a regular 

pentagon; in a "golden" equilateral triangle with an angle at the vertex of 360; in a 

regular decagon, etc. 

After Euclid, the golden ratio was studied by Hypsicles (2nd century BC), 

Pappus (3rd century AD) and others. In medieval Europe, the first knowledge about 

the golden ratio was obtained from Arabic translations of Euclid's Elements. 

Example 6. Solve the recurrence relation 

𝑎𝑛 = 4𝑎𝑛−1 − 4𝑎𝑛−2,   (𝑛 ≥ 3),  where 

 𝑎1 = 1, 𝑎2 = 3. 

The corresponding characteristic equation has the form 

𝑥2 − 4𝑥 + 4 = 0,  

Golden ratio in a mollusk shell 
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that is, (𝑥 − 2)2 = 0,   𝑥 = 2  – a multiple root of the equation. Therefore, the 

general solution of the relation has the form: 𝑎𝑛 = (𝐾1 + 𝑛𝐾2)2
𝑛. 

      We use the initial conditions and get: 

{
1 = 2(𝐾1 + 𝐾2)

3 = 4(𝐾1 + 2𝐾2)
     or    {

2𝐾1 + 2𝐾2 = 1
4𝐾1 + 8𝐾2 = 3.

 

Where 𝐾1 = 𝐾2 =
1

4
.  |Hence, 𝑎𝑛 = (𝑛 + 1)2

𝑛−2.  

Example 7. Let 𝑎1 = 3, 𝑎2 = 6, 𝑎3 = 14 and for any 𝑛 ≥ 4,   

𝑎𝑛 = 6𝑎𝑛−1 − 11𝑎𝑛−2 + 6𝑎𝑛−3. Find 𝑎𝑛. 

The characteristic equation has the form 

𝑥3 − 6𝑥2 + 11𝑥 − 6 = 0, or  (𝑥 − 1)(𝑥 − 2)(𝑥 − 3) = 0. 

The roots of the equation are the numbers 1, 2, and 3. Therefore, the general 

solution of the relation is written in the form 𝑎𝑛 = 𝐾1 + 𝐾22
𝑛 + 𝐾33

𝑛.    

Using initial conditions and solving the corresponding system of linear equations 

{

𝐾1 + 2𝐾2 +  3𝐾3 = 3
𝐾1 + 4𝐾2 + 9𝐾3 = 6
𝐾1 + 8𝐾2 + 27𝐾3 = 14

, 

we get that 𝐾1 = 1,𝐾2 =
1

2
, 𝐾3 =

1

3
 , so then 𝑎𝑛 = 1 + 2

𝑛−1 + 3𝑛−1.  

Example 8. Find 𝑎𝑛 if 𝑎0 = 1, 𝑎1 = 2, 𝑎2 = 12, and for any 𝑛 ≥ 3,   𝑎𝑛 = 6𝑎𝑛−1 −

12𝑎𝑛−2 + 8𝑎𝑛−3.  

The characteristic equation has the form: 

𝑥3 − 6𝑥2 + 12𝑥 − 8 = 0, or (𝑥 − 2)3 = 0. 

This is the case of a multiple root of the characteristic equation. Therefore, the 

general solution has the form 𝑎𝑛 = (С1 + 𝑛𝐶2 + 𝑛
2 𝐶3)2

𝑛 .  

Using the initial conditions, solving the corresponding system of linear equations 

{
С1 = 1

2С1 + 2С2 + 2С3 = 2
4С1 + 8С2 + 16С3 = 12

, 

we get that  С1 = 1,  С2 = −1,  С3 = 1 , and  𝑎𝑛 = (1 − 𝑛 + 𝑛
2 )2𝑛 .  

The case when the characteristic equation has roots of different multiplicities 

is considered in [2, 3].  
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§ 2.3. Inhomogeneous linear recurrence relations with constant coefficients 

  In this section, we briefly consider linear inhomogeneous recurrence relations 

with constant coefficients and one of the methods for their solving. 

Definition. A recurrence relation defined by an equation of the form 

            𝑎𝑛 = В1𝑎𝑛−1 + В2𝑎𝑛−2 +⋯+ В𝑘𝑎𝑛−𝑘 + 𝑓𝑛,   𝑛 ≥ 𝑘,                         

23.8)  

is called an inhomogeneous linear recurrence relation of order k with constant 

coefficients. 

Here, the constants В1, В2, … , В𝑘  are given, 𝑓𝑛 is some given function of 𝑛 

that is not identically zero. 

Let us write equation (2.8) in a more familiar form, renaming the coefficients:     

 𝑎𝑛 + 𝐴1𝑎𝑛−1 + 𝐴2𝑎𝑛−2 +⋯+ 𝐴𝑘𝑎𝑛−𝑘 = 𝑓𝑛, 𝑛 ≥ 𝑘.                         (2.9) 

In §3.2, we considered the method of solving homogeneous linear recurrence 

relations with constant coefficients using the characteristic equation. It turns out that 

there is a connection between a linear inhomogeneous recurrence relation with 

constant coefficients and its corresponding homogeneous recurrence relation. 

Theorem 2.4. The general solution of a linear inhomogeneous recurrence relation 

with constant coefficients can be written as the sum of the general solution of the 

corresponding homogeneous recurrence relation and any partial solution of this 

linear inhomogeneous recurrence relation. 

How to find a partial solution of a linear inhomogeneous recurrence relation 

with constant coefficients? In the general case, it is not possible to propose a 

universal method. But if the right-hand side of the inhomogeneous recurrent relation 

has a special form (for example, a polynomial), then there are universal algorithms 

for finding a partial solution. 

Example 9. Solve a recurrence relation 

𝑎𝑛 = −𝑎𝑛−1 + 3 ∙ 2
𝑛−1,      𝑎1 = 0. 

It is necessary to first solve the corresponding homogeneous relation 𝑎𝑛 =

−𝑎𝑛−1.  Since its characteristic equation is 𝑥 + 1 = 0  has a single root 𝑥 = −1, 

there exists a general solution of the homogeneous recurrence relation of the form 
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𝑎𝑛 = 𝐶 ∙ (−1)
𝑛,   𝐶 − 𝑐𝑜𝑛𝑠𝑡. 

We will seek a partial solution of an inhomogeneous relation  𝑎𝑛 = −𝑎𝑛−1 +

3 ∙ 2𝑛−1 in the form 𝑎𝑛 = 𝐴 ∙ 2
𝑛, the constant 𝐴 needs to be determined. Substituting 

into the original equation gives: 

𝐴 ∙ 2𝑛 = −𝐴 ∙ 2𝑛−1 + 3 ∙ 2𝑛−1, 

where  2𝐴 = −𝐴 + 3, that is,  A=1.  

According to Theorem 2.4, the general solution of the inhomogeneous 

recurrence relation has the form 𝑎𝑛 = 𝐶 ∙ (−1)
𝑛 + 2𝑛, 𝑎𝑙𝑠𝑜  𝐶 = 𝑐𝑜𝑛𝑠𝑡.    

Because  𝑎1 = 0, we get from 0 = 𝐶 ∙ (−1)0 + 20,  that C=2 and, finally,  

𝑎𝑛 = 2 ∙ (−1)
𝑛 + 2𝑛.  

Note that we apply the initial condition at the very end of the procedure. 

Example 10. Find the general solution of the relation 

𝑎𝑛+2 − 6𝑎𝑛+1 + 9𝑎𝑛 = 2𝑛. 

Let us first find the solutions of the corresponding homogeneous relation 

𝑎𝑛+2 − 6𝑎𝑛+1 + 9𝑎𝑛 = 0. 

Its characteristic equation 𝑥2 − 6𝑥 + 9 = 0  has a root x=3 of multiplicity 2, 

i.e., the general solution of the homogeneous recurrence relation has the form 

𝑎𝑛 = 𝐶1 ∙ 3
𝑛 + 𝐶2 ∙ 3

𝑛 ∙ 𝑛 = (𝐶1 + 𝐶2𝑛) ∙ 3
𝑛, 𝐶1, 𝐶2 − 𝑐𝑜𝑛𝑠𝑡. 

We will seek a partial solution to the inhomogeneous relation in the form of the 

right-hand side, i.e. a polynomial of the 1st degree 𝑎𝑛 = 𝐴𝑥 + 𝐵, the constants 𝐴 

and 𝐵 need to be determined. Substituting this into the original equation, we obtain: 

𝐴(𝑛 + 2) + 𝐵 − 6(𝐴(𝑛 + 1) + 𝐵) + 9(𝐴𝑛 + 𝐵) = 2𝑛.  

Using the method of undetermined coefficients, we obtain 

(А − 6А + 9А)𝑛 + 2𝐴 + 𝐵 − 6𝐴 − 6𝐵 + 9𝐵 = 2𝑛, 

or 

4А𝑛 = 2𝑛 

and 

− 4𝐴 + 4𝐵 = 0, 

and therefore 
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𝐴 = 𝐵 = 0,5. 

According to Theorem 2.4, the general solution of the inhomogeneous 

recurrence relation has the form 

𝑎𝑛 = (𝐶1 + 𝐶2𝑛) ∙ 3
𝑛 + 0,5𝑛 + 0,5, 𝐶1, 𝐶2  − 𝑐𝑜𝑛𝑠𝑡. 

More details on the theory of inhomogeneous linear recurrent relations with 

constant coefficients can be found in [8]. 

To solve many computational problems, iterative methods are used, which, in 

essence, are procedures for solving recurrence relations. 

Thus, the simple iteration method for solving a nonlinear algebraic equation 

𝑓(𝑥) = 0 is described by a recurrent equation of the form 

𝑥(𝑛 + 1) = 𝑥(𝑛) + 𝑓(𝑥(𝑛)). 

Newton's method, or the tangent method, is another classical algorithm for 

solving an algebraic equation 𝑓(𝑥) = 0. This is an algorithm for numerically solving 

a recurrence equation 𝑥(𝑛 + 1) = 𝑥(𝑛) −
𝑓(𝑥(𝑛))

𝑓′(𝑥(𝑛))
 .    

Recurrent equations are used for numerical solving and analysis of solutions of 

ordinary differential equations, partial differential equations, integral equations, 

functional equations. You may read more about this in [8]. 

§ 2.4. Generating function of a recurrent sequence 

Consider a homogeneous recurrent sequence {𝑎𝑛} of order 𝑘 {𝑎𝑛}which 

satisfies the relation 

  𝑎𝑛+𝑘 + 𝐴1𝑎𝑛+𝑘−1 + 𝐴2𝑎𝑛+𝑘−2 +⋯+ 𝐴𝑘𝑎𝑛 = 0,   𝑛 = 0, 1,2…             (2.10) 

The first 𝑘 terms of the sequence (𝑎0, 𝑎1, … , 𝑎𝑘−1) are given. The numbers 

included in the sequence can have different natures. 

Definition. Formal power series  

 𝑓(𝑥) =  𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛 +⋯ = ∑ 𝑎𝑖𝑥

𝑖∞
𝑖=0                                   (2.11) 

is called the generating function or generatrix of a recurrent sequence (2.10).  

If all the terms of the sequence (2.10), starting from some, are zero, then the 

generating function is a generating polynomial. 

An example of a generating polynomial is Newton's binomial: 
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(𝑥 + 1)𝑛 = 𝐶𝑛
0𝑥𝑛 + 𝐶𝑛

1𝑥𝑛−1 + 𝐶𝑛
2𝑥𝑛−2 +⋯+ 𝐶𝑛

𝑛,  𝑛 ∈ Ν. 

It determines the sequence 𝐶𝑛
0, 𝐶𝑛

1, 𝐶𝑛
2, … , 𝐶𝑛

𝑛, 0, 0, … 

In fact, in the context of this section, we are only interested in the coefficients 

of the formal power series. For example, for the Fibonacci sequence {𝐹𝑛} = 

{ 1, 1, 2, 3, 5, 8, … },  the generating function has the form:  

𝑓(𝑥) =  1 + 𝑥 + 2𝑥2 + 3𝑥3 +⋯+ 𝐹𝑛𝑥
𝑛 +⋯ 

Generating function for a sequence {2𝑛}  looks like: 

𝑓(𝑥) =  1 + 2𝑥 + 22𝑥2 + 23𝑥3 +⋯+ 2𝑛𝑥𝑛 +⋯ 

The explicit form of the generating function (via a formula) is called the closed 

form in the theory of recurrent sequences. 

For the given example, the closed form of the generating function is as follows: 

                                                     𝑓(𝑥) =
1

1−2𝑥
,    |𝑥| <

1

2
.  

Limitation |𝑥| <
1

2
  is due to the fact that, in the interval (−

1 

2
;  
1

2
) ,  the series 

1 + 2𝑥 + 22𝑥2 + 23𝑥3 +⋯+ 2𝑛𝑥𝑛 +⋯ converges, and outside it diverges.  

From the course of mathematical analysis, it is known that the power series 

on the right-hand side of (3.11) has a convergence region, which is an interval (open, 

closed or semi-closed, it can even be a point). The question of finding the 

convergence interval can be found, for example, in [4]. We use these series as an 

auxiliary tool, and the exact description of the convergence interval is not important 

to us. The method of the generating function is applied for those values of x at which 

the series converges. Note that the derivative and integral of the generating function 

are also defined formally. 

The following functions and series are most often considered: 

Power series Function Sequence 

1 + 𝑥 +⋯+ 𝑥𝑛 +⋯ 1

1 − 𝑥
 

1, 1, 1, 1, … 

1 − 𝑥 +⋯+ (−1)𝑛𝑥𝑛 +⋯ 1

1 + 𝑥
 

1, -1, 1, -1,... 
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1 + 2𝑥 + 3𝑥2…+ (𝑛 + 1)𝑥𝑛 +⋯ 1

(1 − 𝑥)2
 

1, 2, 3, 4, … 

1 + 2𝑥 + 4𝑥2…+ 2𝑛𝑥𝑛 +⋯ 1

1 − 2𝑥
 

1, 2, 4, 8, 16, … 

1 +
𝑚

1!
𝑥 +

𝑚(𝑚 − 1)

2!
𝑥2 +

𝑚(𝑚 − 1)(𝑚 − 2)

3!
𝑥3 +⋯          (1 + 𝑥)𝑚  1,𝑚,

𝑚(𝑚−1)

2!
, …  

 

Let us consider the method for finding the generating function in closed form and 

the formula for the n-th term of a sequence using examples, if the sequence is given 

by a recurrence relation. You can read more about the theoretical foundations of the 

method in [1]. 

Example 11. Consider the stationary sequence 1, 1, 1, …, which can be given by 

the recurrence relation 𝑎𝑛+1 = 𝑎𝑛. It is defined by the function 

𝑓(𝑥) = 1 + 𝑥 +⋯+ 𝑥𝑛 +⋯. 

Let's find the expression for this function in closed form. To do this, multiply 

both sides of the equality by x. Then we get 

𝑥𝑓(𝑥) = 𝑥 + 𝑥2 +⋯ 

or 𝑥𝑓(𝑥) = 𝑓(𝑥) − 1,  whence 𝑓(𝑥) =
1

1−𝑥
. 

Example 12. Consider the recurrence relation of Example 9, 

 𝑎𝑛 = 3 ∙ 2
𝑛−1 − 𝑎𝑛−1,  𝑎1 = 0, 𝑛 ≥ 2.  

Let  𝑓(𝑥) =  𝑎1𝑥 + 𝑎2𝑥
2…+ 𝑎𝑛𝑥

𝑛 +⋯ , then 

 𝑓(𝑥) =  𝑎1𝑥 + (3 ∙ 2
1 − 𝑎1)𝑥

2 + (3 ∙ 22 − 𝑎2)𝑥
3 +⋯ = 

= 𝑎1𝑥 + 3(2𝑥
2 + 22𝑥3 +⋯) − (𝑎1𝑥

2 + 𝑎2𝑥
3 +⋯). 

This equality can be rewritten as follows: 

𝑓(𝑥) = 6𝑥2(1 + 2𝑥 + 22𝑥2 +⋯) − 𝑥𝑓(𝑥), 

where  



22 

 

𝑓(𝑥) =
6𝑥2

(1 − 2𝑥)(1 + 𝑥)
 ,       |𝑥| <

1

2
. 

We have obtained the form of the generating function in closed form. 

Now we will find the formula for the  n-th term of the sequence. To do this, we 

will decompose the fraction into elementary fractions and apply the method of 

undetermined coefficients: 

𝑓(𝑥) =
6𝑥2

(1 − 2𝑥)(1 + 𝑥)
= 6𝑥2 (

А

1 − 2𝑥
+

𝐵

1 + 𝑥
), 

where 𝐴 =
2

3
, 𝐵 =

1

3
. 

Then  𝑓(𝑥) = 2𝑥2 (
2

1−2𝑥
+

1

1+𝑥
).   

Expanding each term in parentheses into a Maclaurin series, we obtain 

𝑓(𝑥) = 4𝑥2(1 + 2𝑥 + 22𝑥2 +⋯) + 2𝑥2(1 − 𝑥 + 𝑥2 −⋯). 

Let's find the coefficient at  𝑥𝑛: 

𝑎𝑛 = 4 ∙ 2
𝑛−2 + 2 ∙ (−1)𝑛−2 = 2𝑛 + 2 ∙ (−1)𝑛. 

Example 13.  𝑎𝑛 = 4𝑎𝑛−1 − 4𝑎𝑛−2, 𝑎1 = 1, 𝑎2 = 3, 𝑛 ≥ 3. 

To find the generating function, we perform the steps similar to those in 

Example 12. 

𝑓(𝑥) =  𝑎1𝑥 + 3𝑥
2 + (4𝑎2 − 4𝑎1)𝑥

3 + (4𝑎3 − 4𝑎2)𝑥
4 +⋯

= 𝑥 + 3𝑥2 + 4(𝑎2𝑥
3 + 𝑎3𝑥

4 +⋯) − 4(𝑎1𝑥
3 + 𝑎2𝑥

4 +⋯) . 

This equality can be rewritten in the following form: 

𝑓(𝑥) = 𝑥 + 3𝑥2 + 4𝑥( 𝑓(𝑥) − 𝑎1𝑥) − 4𝑥
2𝑓(𝑥), 

where 

𝑓(𝑥) =
𝑥 − 𝑥2

(1 − 2𝑥)2
. 

Using Maclaurin’s series again, we have 
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1

(1 − 2𝑥)2
= 1 + 2 ∙ 2𝑥 + 3 ∙ 22𝑥2 +⋯𝑓(𝑥)

= (𝑥 − 𝑥2)(1 + 2 ∙ 2𝑥 + 3 ∙ 22𝑥2 +⋯). 

Now let's find the formula for the n-th term of the sequence. 

𝑎𝑛 = 4𝑎𝑛−1 − 4𝑎𝑛−2 = 𝑛2
𝑛−1 − (𝑛 − 1)2𝑛−2 = (𝑛 + 1)2𝑛−2. 

Example 14. Find the formula for the n-th term of the Fibonacci sequence. 

𝐹1 = 1 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝑛 ≥ 2. 

In this example, we will do it differently than in the previous two. We will 

multiply all equalities by 𝑥0, 𝑥1, … , 𝑥𝑛 respectively and sum the obtained equalities. 

We get: 

 𝑥1𝐹1 +∑𝑥𝑛
∞

𝑛=2

𝐹𝑛 = 𝑥 +∑𝑥𝑛
∞

𝑛=2

𝐹𝑛−1 +∑𝑥𝑛
∞

𝑛=2

𝐹𝑛−2. 

Let us rewrite this equation in the form 

𝑥 +∑𝑥𝑛
∞

𝑛=2

𝐹𝑛 = 𝑥 + 𝑥∑𝑥𝑛−1
∞

𝑛=2

𝐹𝑛−1 + 𝑥
2∑𝑥𝑛−2
∞

𝑛=2

𝐹𝑛−2. 

Denote  𝑓(𝑥) = 𝑥 + ∑ 𝑥𝑛∞
𝑛=2 𝐹𝑛, then 𝑓(𝑥) = 𝑥 + 𝑥𝑓(𝑥) + 𝑥2𝑓(𝑥), where 𝑓(𝑥) =

𝑥

1−𝑥−𝑥2
 is the generating function of the Fibonacci sequence. 

 Let's represent the generating function as a power series. To do this, we 

decompose the fraction into elementary fractions and apply the method of 

undetermined coefficients. The roots of the equation 1 − 𝑥 − 𝑥2 = 0:  

𝑥1 =
−1 + √5

2
,  𝑥2 =

−1 − √5

2
. 

Let's use the method of undetermined coefficients. We decompose the fraction into 

elementary fractions: 

𝑥

1 − 𝑥 − 𝑥2
=

𝐴

𝑥 − 𝑥1
+

𝐵

𝑥 − 𝑥2
. 
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Reducing the right-hand side to a common denominator and solving the 

corresponding linear system, we obtain 𝐴 =
−1+√5

2√5
, 𝐵 =  

1+√5

2√5
.  Then 

𝑥

1−𝑥−𝑥2
=

−1+√5

2√5(𝑥−𝑥1)
+

1+√5

2√5(𝑥−𝑥2)
= 

−1+√5

2√5𝑥1
∙

1

(1−
𝑥

𝑥1
)
+
−1+√5

2√5𝑥2
∙

1

(1−
𝑥

𝑥2
)
. 

Using the formula  
1

1−𝛼𝑥
= 1 + 𝛼𝑥 + (𝛼𝑥)2 +⋯+ (𝛼𝑥)𝑛 +⋯ and applying 

some algebraic transformations of expressions under the summation sign, we obtain 

𝑓(𝑥) = ∑𝑥𝑛
∞

𝑛=0

𝐹𝑛 =
1

√5
∑𝑥𝑛(

∞

𝑛=1

(
1 + √5

2
)

𝑛

− (
1 − √5

2
)

𝑛

),  

hence 𝐹𝑛 =
1

√5
((
1+√5

2
)
𝑛

− (
1−√5

2
)
𝑛

) (Binet's formula again).  

 The foundations of the theory of linear recurrent sequences were laid in the 

first third of the 18th century by the English mathematician Abraham de Moivre 

(1667-1754) and the Dutch mathematician Daniel Bernoulli (1700-1782). Leonard 

Euler set out this theory in the thirteenth chapter of his "Introduction to the Analysis 

of Infinitesimals" (1748). 

The beginning of the generating function method was laid by Abraham de 

Moivre, and the further development and continuation of this method was facilitated 

by the work of Leonard Euler. A. Moivre was engaged in obtaining a formula for 

the general term of the Fibonacci sequence. To do this, he developed the generating 

function method, which is also used in modern mathematics in problems of 

combinatorics, probability theory and number theory. 

The algorithm for forming the Fibonacci sequence is very simple, but 

mathematicians could not obtain a general formula for the  n-th term of the sequence 

for several centuries. Abraham Moivre in 1730, five hundred years after the 

description of the sequence in Leonardo Fibonacci's work (1202), derived the 

formula for the  n-th term of the sequence using the generating function method, 

𝐹𝑛 =
1

√5
((
1+√5

2
)
𝑛

− (
1−√5

2
)
𝑛

). 
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 Now the formula is called Binet's formula (Jacques Philippe Marie Binet, 

1786-1856, a French mathematician, mechanic and astronomer, rediscovered this 

formula a hundred years after Moivre). 

 The summation of recurrent sequences is a problem of finite difference 

calculus. Such problems were addressed by A. Moivre, D. Bernoulli, L. Euler, I. 

Newton, B. Taylor, J. Stirling, etc. 

 The calculus of finite differences acquired the status of an independent 

mathematical discipline only at the beginning of the 18th century in the works of 

Isaac Newton ("Method of Differences", 1811). The theory of recurrent sequences 

is a part of the calculus of finite differences, which, in turn, is a section of the 

mathematical analysis of functions of integer arguments (functions with a discretely 

variable argument). 

 

 

§ 2.5. Derangements 

 Suppose n  people leave their coats in the cloakroom of a theatre. After the 

performance they pick their coats up at random. What is the probability that none of 

them gets their coat? 

Definition. The derangement of the order of the numbers 1,2,… , 𝑛 is a renumbering 

𝜋(1), 𝜋(2),… , 𝜋(𝑛) in such a way that 𝜋(𝑖) ≠ 𝑖, for all 𝑖 = 1,2,… , 𝑛. 

For example, there are nine permutations of numbers 1 2 3 4:  

2 4 1 3,  2 1 4 3,  2 3 4 1,  3 1 4 2,  3 4 2 1,  3 4 1 2,  4 1 2 3,  4 3 1 2,  4 3 2 1. 

In all these combinations, 1 is not in the first place, 2 is not in the second place, 

and so on. 

Denote by 𝑑𝑛 the number of derangements of the numbers 1,2,… , 𝑛. It is easy 

enough to calculate that 𝑑1 = 0,  𝑑2 = 1, 𝑑3=2, 𝑑4 = 9. Our goal is to find 

recurrence relations for 𝑑𝑖, and then the formula for calculating 𝑑𝑛.  

        Let us first note that 𝑑𝑛 is the number of ways to place n objects in n boxes, 

when for each object one box is forbidden and when each box is forbidden for one 
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of the objects. Above, the boxes and objects were numbered 1,2,… , 𝑛, where the i-

th box is forbidden for the i-th object. In general, the numbering can be arbitrary. 

We further note that among the nine derangements of the numbers 1, 2, 3, 4, there 

are three where the number 4 is interchanged with another number, these 

permutations: 2 1 4 3, 3 4 1 2 and 4 3 2 1. 

In the other six permutations, the number 4 is not interchanged with another number. 

Given this, we have  

𝑑𝑛 = 𝑒𝑛 + 𝑓𝑛,   

where 𝑒𝑛is  the number of disorderings in which the number 𝑛 is exchanged for some 

other number, and 𝑓𝑛 – the number of rearrangements in which the number 𝑛 does 

not swap places with another number. If the number 𝑛  swaps places with the number 

𝑖  (there are (𝑛 − 1) ways to choose 𝑖 in total), then the remaining (𝑛 − 2)  numbers 

can be reordered in 𝑑𝑛−2 in ways.  

So, 𝑒𝑛 = (𝑛 − 1)𝑑𝑛−2. 

If 𝑛 leaves its place and a number 𝑟 comes to this place (the number of ways to 

choose this 𝑟  is (𝑛 − 1) ), then there are 𝑛 − 1 places and 𝑛 − 1 numbers left, and 

again one place is forbidden for each number, and one number is forbidden for each 

place (all numbers have their places forbidden, and for 𝑛 the 𝑟-th place is forbidden ). 

Therefore,  𝑓𝑛 = (𝑛 − 1)𝑑𝑛−1. So,  

          𝑑𝑛 = (𝑛 − 1)(𝑑𝑛−1 + 𝑑𝑛−2)                                             (2.12) 

Using this recurrence relation, we obtain that 

𝑑5 = 4(9 + 2) == 44, 

𝑑6 = 5(44 + 9) = 265  

and so on. 

The recurrence relation (2.12) cannot be solved by the auxiliary equation 

method, since the coefficients at 𝑑𝑛−1 and   𝑑𝑛−2 (both levels (𝑛 − 1)) are not 

constant. However, we can reduce (2.6) to a more convenient form. 

We rewrite equality (2.12) in the form  

𝑑𝑛 − 𝑛𝑑𝑛−1 = −(𝑑𝑛−1 − (𝑛 − 1)𝑑𝑛−2). 
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The expression on the right-hand side is obtained by changing the sign on the left-

hand side and replacing 𝑛  with 𝑛 − 1. Therefore, iterating, we obtain  

𝑑𝑛 − 𝑛𝑑𝑛−1 = −(𝑑𝑛−1 − (𝑛 − 1)𝑑𝑛−2) = (−1)
2(𝑑𝑛−2 − (𝑛 − 2)𝑑𝑛−3) =

⋯ = = (−1)𝑛−2(𝑑2 − 2𝑑1) = (−1)
𝑛(1 − 0) = (−1)𝑛, 

 that is, 

𝑑𝑛 − 𝑛𝑑𝑛−1 = (−1)
𝑛 .                                            (2.13) 

So, 

𝑑𝑛

𝑛!
−

𝑑𝑛−1

(𝑛−1)!
=
(−1)𝑛

𝑛!
. 

Adding equalities   
𝑑𝑚

𝑚!
−

𝑑𝑚−1

(𝑚−1)!
=
(−1)𝑚

𝑚!
, where 𝑚 = 2,3,… , 𝑛, we get 

𝑑𝑛
𝑛!
−
𝑑1
1!
=
(−1)2

2!
+
(−1)3

3!
+ ⋯+

(−1)𝑛

𝑛!
= ∑

(−1)𝑚

𝑚!

𝑛

𝑚=2

= ∑
(−1)𝑚

𝑚!

𝑛

𝑚=0

. 

or 𝑑1 = 0, therefore we have 

𝑑𝑛 = 𝑛!∑
(−1)𝑚

𝑚!

𝑛
𝑚=0 = 𝑛! (1 −

1

1!
+
1

2!
−⋯+

1

𝑛!
).                    (2.14) 

One interesting consequence of this result is that 

𝑑𝑛
𝑛! 𝑛→∞
→   

1

𝑒
. 

Thus, the probability that no one gets their coat is tending as 𝑛 → ∞ to 
1

𝑒
=

0,36788….  

For example, for 𝑛 = 6  we have 
𝑑6

6!
=
265

720
≈ 0,36806, which coincides to the 

third digit with  
1

𝑒
. 

Example 15. Find the number of permutations of the numbers 1,2,… , 𝑛, in which 𝑘  

numbers are at their places. 

There are 𝐶𝑛
𝑘 ways to choose 𝑘 numbers which we fix. The remaining 𝑛 − 𝑘 

must be located in different places. The number of ways of such locations is equal 

to 𝑑𝑛−𝑘. Therefore, by the multiplication principle, we get the answer 𝐶𝑛
𝑘𝑑𝑛−𝑘. 
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§ 2.6. Sorting algorithms 

Often in problems it is necessary to be able to estimate the number of 

elementary operations or the time required by the computer to execute the entire 

algorithm. This is important because some operations take longer to execute than 

others. 

Sometimes it is also necessary to take into account the amount of computer 

memory, the accuracy of calculations, etc. for the execution of the algorithm. 

Obviously, this is important only for programs that require significant time to 

execute, which may depend on such a factor as the amount of data. That is why the 

concept of time complexity of an algorithm is often considered. Despite the fact that 

the time complexity function of an algorithm can be defined exactly in some cases, 

in most cases it is pointless to look for its exact value. 

Consideration of the input data size and estimating the order of increasing the 

algorithm's running time lead to the concept of the asymptotic complexity of the 

algorithm. In this case, an algorithm with a lower asymptotic complexity is more 

efficient for all input data, with the possible exception of small data. Asymptotic 

notation is used to record the asymptotic complexity of algorithms. In particular, the 

phrase "the complexity of an algorithm is «О big of 𝑓(𝑛)» means that as the amount 

of input information to the algorithm increases, the running time of the algorithm 

will grow no faster than some constant multiplied by 𝑓(𝑛) and is denoted as 

 𝑂(𝑓(𝑛)). The letter " 𝑛 " here is the size of the input data, and the function, for 

example, «𝑓 (𝑛)  =  𝑛²» inside "O ( )" gives us an idea of how complex the 

algorithm is in relation to the amount of input data. 

If some algorithm needs to execute 17𝑛3 + 3𝑛 conditional operations to 

process n elements of input data, then as 𝑛 increases, the final running time will be 

significantly more affected by raising 𝑛  to the cube than by multiplying 𝑛  by 17 or 

adding 3n. The time complexity of the algorithm is 𝑂(𝑛3), i.e. depends on the size 

of the input data cubically. 

The use of the capital letter O (or the so-called O-notation) came from 

mathematical analysis, where it is used to compare the asymptotic behavior of 
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functions. The running time of an algorithm can be classified depending on which 

function is under the O-notation. For example, an algorithm with complexity 𝑂 (𝑛) 

is called an algorithm with linear running time, an algorithm with  𝑂( 𝑛𝛼 )  for some  

α > 1 is called polynomial. 

For example, if we consider the algorithm for adding two matrices of size 

𝑚 × 𝑛, then obviously 𝑚𝑛 addition operations are performed. Then the number of 

all arithmetic operations performed has a complexity index 𝑂(𝑁2), were 𝑁 =

max {𝑚, 𝑛}.  

Similarly, the number of arithmetic operations performed when multiplying a 

matrix of size 𝑚× 𝑝 by a matrix of size 𝑝 × 𝑛 is of the order 𝑂(𝑁3), where 𝑁 =

max {𝑚, 𝑛, 𝑝} (𝑚𝑛𝑝  operations of addition and 𝑚𝑛𝑝 multiplication operations). 

We can also consider the constant complexity of the algorithm, O(1). This 

means that the selected operation requires constant time. Such operations do not 

depend on the amount of data. For example, to determine the value of the fifth 

element of an array, you do not need to memorize the elements or go through the 

elements several times. You always just need to wait for the fifth element in the input 

stream and this will be the result, the calculation of which takes approximately the 

same time for any amount of data. 

There are also algorithms with logarithmic complexity, denoted as 𝑂(𝑙𝑜𝑔 𝑛). 

The last notation is the standard notation for logarithmic complexity algorithms 

regardless of the base of the logarithm. This notation is used because computers use 

the binary number system, so we need to use 2 as the base of the logarithm (i.e. we 

get the notation 𝑙𝑜𝑔2𝑛). However, when changing the base of the logarithm 𝑙𝑜𝑔2 𝑛    

and log𝑏 𝑛 differ only by a constant factor 𝑙𝑜𝑔𝑏 2, which is discarded in O-notation. 

The simplest algorithm with logarithmic complexity is binary search. Indeed, if the 

data array is sorted, then we can check whether there is any specific value in it by 

dividing it in half. Next, we check the middle element, if it is greater than the one 

we are looking for, then we will discard the second half of the array, since it 

definitely does not have the desired element. If it is less, then on the contrary - we 

will discard the first half of the array. Similarly, we will further divide the resulting 



30 

 

“half-array” in half, each such operation reduces the amount of input data by half, 

as a result we will check 𝑙𝑜𝑔 𝑛 array elements. 

For example, the algorithm for finding the largest element in an unsorted array 

has linear complexity 𝑂(𝑛). We need to go through all 𝑛 elements of the array to 

figure out which one is the largest. 

Quadratic complexity 𝑂(𝑛2) has, for example, an insertion sort algorithm. In 

its canonical implementation, it is two nested loops: one to go through all the 

elements of the array, and the second loop to find a place for the next element in the 

already sorted part. Thus, the number of operations will depend on the size of the 

array, 𝑛 ∗ 𝑛, i.e. 𝑛2. Sometimes algorithms with such complexity are unavoidable, 

but quadratic complexity is rather a reason to reconsider the algorithms or data 

structures used. An example of an algorithm with quadratic complexity is the bubble 

sort algorithm for an array. 

There are also algorithms with linear-logarithmic 𝑂(𝑛 ∙ 𝑙𝑜𝑔𝑛 ), 

polylogarithmic 𝑂(𝑙𝑜𝑔𝑘𝑛 ), quasilinear 𝑂(𝑛 ∙ 𝑙𝑜𝑔𝑘𝑛 ) complexities for some 𝑘, etc. 

An example of a linear-logarithmic algorithm is a binary tree sorting algorithm, an 

example of a quasi-linear algorithm is quick sort or heap sort algorithms, etc. 

Algorithms with polynomial complexity  𝑂(𝑛𝑘) for some 𝑘 form a class of 

algorithms P, which is central to the theory of computational complexity. All basic 

arithmetic operations are implemented by the algorithm in polynomial time. 

Problems which require exponential execution time are called exponential. 

Their complexity is bounded by the function 𝑒𝑃(𝑛), were 𝑃(𝑛) – some polynomial 

that depends on the size of the input data n.  

Note that exponents have a higher complexity than polynomials. So the 

algorithm complexity 𝑂(2𝑛) is more complicated than 𝑂(𝑛99).  

Note that factorials are more complex than powers. A brief proof of this fact is 

to understand that factorials and powers contain the same number of factors, but the 

numbers we multiply increase for factorials and remain the same for powers. 
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The study of algorithms of varying complexity is the subject of algorithm 

theory. 

Let us consider some of the most common sorting algorithms: the bubble sort 

algorithm and the merge sort algorithm. 

Let us consider a pile of papers with written answers from students. We want 

to sort them, that is, arrange them in ascending or descending order of grades. Is 

there an efficient way to do this? Let us start with a simple but not very efficient 

procedure.  

 

Bubble Sort 

First, let's note that sorting always requires repeated actions, for which either 

loops or recursion are used. The efficiency of the algorithm is assessed by the 

number of necessary actions. Most often, for this, we calculate the number of 

pairwise comparisons of sorted data elements (arrays) and the number of exchanges 

of adjacent elements in pairs. 

The bubble sort algorithm is a fairly simple to implement algorithm for sorting 

arrays. In the literature, you can find other names for this algorithm, e.g., sorting by 

simple exchanges. The algorithm is called bubble because the larger (or smaller) 

value "pops" (shifts) to the edge of the array after each iteration. The bubble sort 

algorithm consists of repeated passes through the array being sorted. At each 

iteration, adjacent elements are compared sequentially, and if the order in the pair is 

incorrect, the elements are swapped. For each pass through the array, at least one 

element is replaced, so it is necessary to make no more than 𝑛 − 1 passes to sort the 

array, where 𝑛 is the size of the array. 

Let's illustrate the algorithm with an example. 

Let's take 𝑛  sheets of students' work in random order, they form an array. We 

will sort the sheets in ascending order of students' grades. 

Compare the first two and swap them if they are not in ascending order of 

grades. Then compare the second with the third and swap them again if necessary. 

Doing this until the end of the sequence, we will get the highest grade in the last 
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place. Then we repeat the procedure for the first 𝑛 − 1  numbers. Then the second 

highest number will be in the penultimate place. Repeat the procedure for the first 

𝑛 − 2 numbers and so on. 

The total number of sheet movements (comparisons) in this procedure is 

(𝑛 − 1) + (𝑛 − 2) +⋯+ 2 + 1 =
1

2
𝑛(𝑛 − 1) =

1

2
𝑛2 −

1

2
𝑛. 

In this case, we say that the algorithm has a complexity index 𝑂(𝑛2).  

Example 16. Let there be sheets with grades 7, 10, 4, 6, 3. Sort them in ascending 

order of grades using a bubble sort. 

After the first 4 moves of the sheets, we have 7, 4, 6, 3, 10. After the next 3 moves: 

4, 6, 3, 7, 10. After the next two: 4, 3, 6, 7, 10. After the last comparison of grades: 

3, 4, 6, 7, 10. 

The total number of moves is 10. 

 

 

Merge sort 

The idea is to divide the given set into two (approximately equal) parts. Then 

we sort each part, and then merge (combine) them. The process of merging two 

sorted sets of lengths 𝑙 and 𝑚 into one set requires 𝑙 +  𝑚 − 1 comparisons. This is 

explained as follows. Let there be two sorted sets in ascending order. We compare 

the first (smallest) numbers of the sets and choose the smaller one as the first number 

of the new set. In doing so, we cross out this number from the set from which it was 

taken. We repeat the procedure and find the second number of the new set, and so 

on. Obviously, the number of comparisons does not exceed 𝑙 +  𝑚 − 1, since no 

comparison is required to choose the last one. 

Before comparing two sorted parts, they need to be ordered. Let 𝑡𝑛 – the 

number of comparisons required to sort n numbers by the chosen sorting method. If 

we divide the set of n elements into two with 𝑙  and 𝑘 elements, we get 

𝑡𝑛 = 𝑡𝑙 + 𝑡𝑘 + 𝑙 + 𝑘 − 1 = 𝑡𝑙 + 𝑡𝑘 + 𝑛 − 1. 
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Thus, if we consider the particular case  𝑛 = 2𝑚 so that the set can be divided 

in half at each stage, then we get 

𝑡2𝑚 = 2 𝑡2𝑚−1 + (2
𝑚 − 1) 

Let's substitute  𝑎𝑚 = 𝑡2𝑚 . Then the recurrence relation has the form 

                            𝑎𝑚 = 2 𝑎𝑚−1 + (2
𝑚 − 1).                                     (2.15) 

Let us first solve the homogeneous recurrence relation 

𝑎𝑚 = 2 𝑎𝑚−1. 

Obviously, the solution has the form 𝑎𝑛 = 𝐴2
𝑛, werе A – is an arbitrary 

constant. Let us now find a partial solution to relation (2.15). Let us use the method 

of undetermined coefficients.  

   The method of finding a solution in the form 𝑎𝑛 = 𝐵2
𝑛 + 𝐶  will not lead to 

a result, because 2𝑛  is a solution of the homogeneous recurrence relation, so we are 

looking for a partial solution in the form  

𝑎𝑛 = 𝐵𝑛2
𝑛 + 𝐶.  

    After substitution we get 

𝐵𝑛2𝑛 + 𝐶 = 2𝐵(𝑛 − 1)2𝑛−1 + 2𝐶 + 2𝑛 − 1, 

that is, 

0 = −𝐵2𝑛 + 2𝑛 − 1 + 𝐶, 

from which we get 𝐵 = 𝐶 = 1  and, accordingly, 

𝑎𝑛 = 𝐴2
𝑛 + 𝑛2𝑛 + 1 

We have 𝑎1 = 1, and accordingly,  𝐴 = −1. Finally, we have that 

𝑎𝑛 = 2
𝑛(𝑛 − 1) + 1. 

So, 𝑡2𝑚 = 1 + 2
𝑚(𝑚 − 1).   

Let's substitute 𝑛 = 2𝑚, then we get 𝑡𝑛 = 1 + 𝑛(𝑙𝑜𝑔2𝑛 − 1).  

Therefore, this sorting method has a complexity index of 𝑂(𝑛𝑙𝑜𝑔2𝑛). This is 

better than using the previous method, the complexity of which is   𝑂(𝑛2), because 

𝑛2 increases with increasing n faster than 𝑛𝑙𝑜𝑔2𝑛. 

Below, is a table of common array sorting algorithms and their time 

complexity. 
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Algorithm Data structure Time complexity 

Merge sort Massive 𝑂(𝑛 log𝑛) 

Pyramid sorting Massive 𝑂(𝑛 𝑙𝑜𝑔 𝑛) 

Bubble sort Massive 𝑂(𝑛2) 

Insertion sort Massive 𝑂(𝑛2) 

Sort by selection Massive 𝑂(𝑛2) 

 

 

§ 2.7. Catalan numbers 

In this section  we will introduce a well-known sequence of numbers called 

Catalan numbers, which occurs in many problems of various types. Catalan numbers 

are named after the Belgian mathematician Catalan (E. S. Catalan 1814-1894), who 

considered them in his publications. But they were considered even earlier by other 

mathematicians, including L. Euler in his work on the division of a polygon into 

triangles (we will discuss this briefly later). 

We will describe one case in full where Catalan numbers occur and start with 

the following simple problem. 

Example 17. How many “up-to-right” paths are there from point A to point B (Fig. 

1)?  

                                                                              B (5, 3)  

      

     

     

                           A (0,0)             Fig. 1 

By the "up-right" path we mean moving along the sides of the small squares 

always up or to the right. Each path consists of 5 moves to the right and 3 moves up. 

Thus, the total number of possible paths is 𝐶8
3. In the general case, if a rectangle has 

length m  and height n, then the number of such paths is 𝐶𝑚+𝑛
𝑛 .   
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Let's say we have now an 𝑛 × 𝑛  square and we need to find the number 𝑝𝑛 of 

paths "right-up" from the lower left corner to the upper right corner, which pass 

under the diagonal AB (possibly touching it). In the case of n = 3, shown in Fig. 2, 

there are 5 such paths, which can be described as: RURURU, RURRUU, RRUURU, 

PPVPVV, RRRUUU, where R means right, U means up. So 𝑝3 = 5.  And what is 

 𝑝𝑛 equal to?      

В 

 

 

 

                                     А 

Fig. 2 

We will call any path that satisfies our conditions “correct”. Such a path 

touches the diagonal at least once before reaching point B (at least at point A). 

Consider any correct path. Let its last touch of the diagonal before B be at point 

С(m,m),  where 1 ≤ 𝑚 < 𝑛. Then  𝑝𝑚 – is the number of correct paths from A to C. 

The path from point C must continue to point  D(m+1, m), and from there to the 

point Е(n, n-1)  (see. fig. 3), but it should not go over the line DE anywhere, 

otherwise C would not be the last point of tangency of the diagonal. But the points 

D and E are opposite vertices of a square with side 𝑛 −𝑚 − 1, and the number of 

correct paths from D to E is 𝑝𝑛−𝑚−1. 

                                        

Fig.  3 
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By the product rule, the number of correct paths from A to B with the last 

diagonal tangent to point B (m,m) is equal to 𝑝𝑚𝑝𝑛−𝑚−1.  

Since m  can take all values from 0 to n-1, by the sum rule we get 

𝑝𝑛 = ∑ 𝑝𝑚𝑝𝑛−𝑚−1
𝑛−1
𝑚=0 .                                      (2.16)   

 The initial condition 𝑝1 = 1 is obvious, then by formula (2.16) we get 𝑝0
2 = 1.  

        So, let's choose   𝑝0 = 1.                                                                          

This recurrence relation differs from the previously considered ones in that it 

is not linear. To solve the relation, we will apply the method of the generating 

function.   

Let  𝑓(𝑥) =  𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 +… 

Then, using (3.16), we obtain 

𝑓2(𝑥) = ( 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 +⋯)( 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥

2 +…) = 

=∑ 𝑥𝑛(𝑝0𝑝𝑛 + 𝑝1𝑝𝑛−1 +⋯+ 𝑝𝑛𝑝0)
∞
𝑛=0 = ∑ 𝑝𝑛+1𝑥

𝑛∞
𝑛=0  

So, 𝑥𝑓2(𝑥) = 𝑓(𝑥) − 𝑝0 = 𝑓(𝑥) − 1, from which we get 

𝑥𝑓2(𝑥) −  𝑓(𝑥) + 1 = 0. 

Solving this quadratic equation, we get: 

𝑓(𝑥) =  
1 − √1 − 4𝑥

2𝑥
=
1

2𝑥
(1 − (1 − 4𝑥)

1
2). 

We choose a minus sign before the root (any sign can be chosen) to avoid having a 

term of the form 
1

𝑥
   in  𝑓(𝑥).  

 Developing   (1 − 4𝑥)
1

2 into the Maclaurin series, we have: 

𝑓(𝑥) =  
1

2𝑥
{1 − (1 −

1

2
∙ 4𝑥 −

1

2
∙
1

2
∙
42𝑥2

2!
−
1

2
∙
1

2
∙
3

2
∙
43𝑥3

3!
−⋯)}= 

=
1

2𝑥
(
1

2
∙ 4𝑥 +

1

2
∙
1

2
∙
42𝑥2

2!
+
1

2
∙
1

2
∙
3

2
∙
43𝑥3

3!
+ ⋯) = 

= 1 +
1

2
∙
4𝑥

2!
+
1

2
∙
3

2
∙
42𝑥2

3!
+
1

2
∙
3

2
∙
5

2
∙
43𝑥3

4!
+ ⋯ 

 Thus, for 𝑛 ≥ 1, 
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𝑝𝑛 =
1 ∙ 3 ∙ 5 ∙ … ∙ (2𝑛 − 1)

2𝑛(𝑛 + 1)!
∙ 4𝑛 =

2𝑛 ∙ 1 ∙ 3 ∙ 5 ∙ (2𝑛 − 1)

(𝑛 + 1)!
=

2𝑛(2𝑛)!

(𝑛 + 1)! 2𝑛𝑛!

=
1

𝑛 + 1
𝐶2𝑛
𝑛  

For example, 𝑝3 =
1

4
𝐶6
3 = 5, аnd  𝑝4 =

1

5
𝐶8
4 = 14. Note that 𝑝0 = 1   satisfies 

the condition 𝐶0
0 = 1.   

Definition. Numbers  𝑝𝑛 are called Catalan numbers,  they are usually designated 

as 𝐾𝑛.  

Therefore, 

                                                   𝐾𝑛 =
1

𝑛+1
𝐶2𝑛
𝑛 .                                      (2.17)                                                                                                                            

The sequence {𝐾𝑛}𝑛≥0 starts like this: 1, 1, 2, 5, 14, 42, 139, 429, … 

From (2.17) we obtain 

𝐾𝑚 = 𝐾0𝐾𝑚−1 + 𝐾1𝐾𝑚−2 +⋯+𝐾𝑚−1𝐾0.                    (2.18) 

As mentioned earlier, Catalan numbers arise in various situations. Thus, 

replacing R and U with 0 and 1 respectively, we obtain that Catalan numbers 𝐾𝑛  are 

equal to the number of binary sequences of length 2𝑛  containing 𝑛  zeros and 𝑛  

ones, provided that in each section starting from the left end, the number of ones 

does not exceed the number of zeros.  

L. Euler first encountered this sequence when solving the following problem: 

in how many ways can a convex n-gon be cut into triangles by disjoint diagonals?  

It is obvious that for n = 3 this problem has no solutions, for n = 4 there are two 

ways, for n = 5 there are 5 ways, for n = 6 there are 14 ways.     

In the general case, the Catalan number 𝐾𝑛−2 is equal to the number of ways 

to divide a convex 𝑛-gon into triangles by (𝑛 − 3) diagonals. For example, 𝐾3 = 5 

The method of dividing a pentagon into triangles is shown in Fig. 4. 

 

 

 

Fig.  4 
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In 1838, Catalan solved the following problem: "Let there be a chain of 𝑛 letters 

arranged in a given order. It is necessary to arrange (𝑛 − 1) pairs of brackets so that 

inside each pair there are exactly two "expressions". These paired expressions can 

be either two adjacent letters or two adjacent expressions. In how many ways can 

the brackets be arranged?" The solution of the problem led to the mathematics of the 

numerical sequence, which later began to bear his name.  

We would like to note that Catalan numbers often arise when solving 

combinatorial problems. You can get acquainted with this sequence in more detail, 

for example, in [5, 6, 7, 8].   
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