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Three spectra problem for Stieltjes
string equation and Neumann conditions

Anastasia Dudko, Vyacheslav Pivovarchik

Abstract. Spectral problems are considered which appear in description of
small transversal vibrations of Stieltjes strings. It is shown that the eigenval-
ues of the Neumann-Neumann problem, i.e. the problem with the Neumann
conditions at both ends of the string interlace with the union of the spectra
of the Neumann-Dirichlet problems, i.e. problems with the Neumann condi-
tion at one end and Dirichlet condition at the other end on two parts of the
string. It is shown that the spectrum of Neumann-Neumann problem on the
whole string, the spectrum of Neumann-Dirichlet problem on the left part of
the string, all but one eigenvalues of the Neumann-Dirichlet problem on the
right part of the string and total masses of the parts uniquely determine the
masses and the intervals between them.

Amnoranisi. CkiHYeHHOBUMIDHI CIIEKTPAJIbHI 33724l BUHUKAIOTH Yy MEXaHi-
Il IPU ONHUCI MaJINX TIOIEPEYHUX KOJMBaHb, TaK 3BAHUX, CTIIIHBTHECIBCHKUX
CTPYH Ta TMOB3JOBXKHUX KOJUBAHb TOYKOBUX MAaC, 3’'€THAHUX TPY KUHAMMI.
Bonn Takox BUHUKAIOTH y TEOPil CHHTE3y €JIeKTPUTHUX JIAHIOTIB.

Ob6epHeni 3a/1a4i M0JATAOTh y BiJIHOBJIEHHI [ApAMETPIB CUCTEMHU, BUXO-
aa4an 31 cnekTpiB 11 konmmBanb. Y poborax M. I'. Kpeitna Oyrna moBHiCTIO
pO3B’sizana obepHeHa 3aJada 3a JIBOMA CIIEKTPaMH, TOOTO 3a CIIEKTPOM 3a-
nadi 3 ymoBamu Jlipixjie Ha 060X KiHIZX iHTEpBaJy Ta CIEKTPOM 3ajadi 3
yMmoBoro ipixsie Ha siBoMy KiHni Ta ymosoro Hoiimana Ha mpaBoMy KiHIT.

3aMicTb BOX CIIEKTPIB 33/1a9 HA BCHOMY iHTEPBAJ MOXKHA B3SITH CIEKTP
3a/1a4i Ha BChOMY IHTEPBaJI Ta CIEKTPHU 3a/la4 Ha JBOX YaCTHMHAX I[bOT'O iH-
TepBay.

B marmmiit craTTi ME pO3I/IAIAEMO CIEKTPAIbHY 33/1a9y, TOPOIZKEHY PEKY-
PEHTHUMU CITiBBITHOIEHHSIMHU CTIJIBTHECIBCHKOI cTpyHHU 3 ymMoBaMu HoiimaHa
Ha 000X KIHIISIX (3a;Laqa Hoitmana-Hoiimana) pa3oM i3 3ajia4aMu Ha 94aCTH-
Hax imrepBasy 3 ymoBamu Hoiimawra Ha jgiBomy Kinmi ta [lipixse Ha mpaso-
My Kinni (3amaga Hoiimana-/ipixie). Mu mokasasin, 1o BIacHi 3HAYEHHS
3amadi Hoitmana-Hoiimana Ha BChbOMY iHTepBasIi 4epryroThed 3 eJIeMeHTaMHU
o0’ennanus cuekTpis 3amaa Hoiimana-lipixsie Ha gacTuHax inTepBay.

Binnosizna obeprena 3aj1ava mojidrae y 3HaX0/XKEHHI MapaMeTpiB CTijib-
TBECIBCHKOI CTPYHU (BEJIMYIMH TOIKOBUX MAC Ta IHTEPBAJIB Mi?K HUMH ), BUXO-
JI9N7 i3 3arajJbHAX MAC 9aCTUH CTPYHH, CrieKTpiB 3ama4d Hoiimana-Hoiimana
Ha Bciit crpyni Ta Hoitmana-lipixiie Ha 4YacTUHAX CTPYHH.
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st Takol 3ajadi My J1oBesd, 1o crekTp 3agadi Hoitmana-Hoiimana na
BCi#t cTpyHi, ciekTp 3ama4i Holimana-/lipixie na jiBiit yacTuni cTpyHu, Bei,
KpiM ofHOrO, BiacHi 3HaveHHsa 3a7a4i Hoiimana-/lipixie ma mpasiit gactu-
Hi CTPYHHU Ta 3arajbHi Macu 000X YACTHH CTPYHU OJHO3HAYHO BU3HAYAIOTH
BEJINYMHU BCIX TOYKOBHX MAC Ta IHTEPBAJIU MiXK HUMH.

1. INTRODUCTION

Finite dimensional spectral problems have physical interpretations in me-
chanics where they appear in description of transverse vibrations of the
so-called Stieltjes strings (see [12] and [6, Addition II]), of longitudinal vi-
brations of point masses connected by springs [13]. They have also an
interpretation in the synthesis of electric circuits [10, 5, 4]. Inverse prob-
lems lie in recovering the parameters of the system using the spectrum or
spectra of its vibrations. In [6] the inverse problem for a single Stieltjes
string was solved completely. In particular, it was shown that in order
to recover parameters of a string it is necessary to know two spectra of
boundary value problems with different boundary conditions. Also in [6]
conditions were found necessary and sufficient for two sequences of numbers
to be the spectra of such problems.

Generalizations for the case of damped Stieltjes strings were obtained
in [17, 1], and for trees of Stieltjes strings in |7, 8, 9, 15, 2, 16|, see also [14].

In [3] a three spectra inverse problem was considered: given the spectra
of a Dirichlet-Dirichlet problem on a whole string and Dirichlet-Dirichlet
problems on two parts of the string together with lengths of the parts, find
the masses and the subintervals between them. In the present paper we
consider an analogue of this result for the case of a Neumann-Neumann
problem on the whole string and the Neumann-Dirichlet problems on two
parts of the string.

In Section 2 we consider the direct three spectra problem. We show that
the eigenvalues of a Neumann-Neumann problem interlace in a not strict
sense with the union of the spectra of Neumann-Dirichlet problems on the
parts of the string and with the union of the spectra of Neumann-Neumann
problems on the parts of the string.

In Section 3 we solve the corresponding inverse three spectra problem:
given the spectrum of a Neumann-Neumann problem on a whole string, the
spectrum of a Neumann-Dirichlet problem on the left part of the string, all
but one eigenvalues of the Neumann-Dirichlet problem on the right part
of the string and the total masses of the parts of the string, find all the
point masses and all the intervals between them except for the intervals
neighboring the ends of the string. It turns out that due to the fact that the
lowest eigenvalue of any Neumann-Neumann problem is 0, a three spectra
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inverse problem appears to be overdetermined if all three spectra are given.
Therefore, we use the Neumann-Neumann spectrum of the problem on the
whole interval, a Neumann-Dirichlet problem on the left part of the string
and all but one eigenvalues of a Neumann-Dirichlet problem on the right
part of the string. Also we give conditions on three sequences of numbers
necessary to be the spectrum of the Neumann-Neumann problem on a whole
string (the first sequence), the spectrum of the Neumann-Dirichlet problem
on a part of the string (the second sequence), and a part of the spectrum of
the Neumann-Dirichlet problem on the second part of the string (the third
sequence).

2. DIRECT SPECTRAL PROBLEM

We consider a Stieltjes string (an elastic massless thread bearing a finite
number of point masses). The string consists of two parts, which are joined
at one end while the other end is free to move in the direction orthogonal to
the equilibrium position of the string. The joining point is free of mass. We
measure distances from the free ends. Starting indexing from the free ends,

n; masses mt > 0,k =1,...,n;, are positioned on the j-th part, j = 1,2,
which divide the j-th part into n; +1 (n; > 1) subintervals denoted by
l,(j) >0 (k=0,...,n;) again starting indexing from the free ends.

In particular, l(()j ) is the distance on the j-th part between the free end-
point and mgj), l,gj) for (k = 1,...,n; — 1) is the distance between m{?
,EQI, and l%) is the distance on the j-th thread between the joined
endpoint P and mS:Z])

The tension of the thread is assumed to be equal to 1. The transver-

sal displacement of the point mass m,(j ) at the time t is denoted by v,(gj ),

For the convenience, we denote by v(()j ) the transversal displacement of the
(9)
nj+1
endpoints, see Figure 2.1.

and m

free endpoints and by v (t) the transversal displacement at the joint

FIGURE 2.1.
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Total masses of the strings are denoted by m:

m;j :ng). (2.1)
k=1
Newton’s law gives the following equations of motion for the masses:

©) (9) k "k ’
lk: lk—l

k=1,...,nj,7=1,2. The joined ends give rise to

1 2
U£L1)+1(t) = U1(12)+1(t)
and the balance of forces at P leads to

2 U%) (t) - Ug-)-i-l(t)
4 0)

nj

=0.

7j=1

At the free ends we have
o) =20, j=12

which means that the ends are free to move in the direction orthogonal
to the equilibrium position of the string. Substituting v,(f )(t) = ugf ) gixt
and changing the spectral parameter for z = A\?> we obtain the following

()

recurrences for the amplitudes u;’’, (k =1,...,n;, j = 1,2), of vibrations:
() (9) (4) ()
Up —Upypr | Y T U1 (), () _
) + 0 my zup’ =0, (2.2)
k k-1
1 2
ugl,l)#»l = U/ELQ)+1’ (23)
2,0 _ 0
Y o, (2.4)
— l(])
Jj=1 nj
u) = 4V ) =1,2 2.5
o =ur,, J=1L44 ( . )

Following [6] we look for the solution to (2.2)-(2.5) in the form:
u = Q) L (k=1,...,n5, j=1,2), (2.6)

where ngk)_z(z) is a polynomial of degree k — 1, which are the solutions
of (2.2) and (2.5).
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We introduce the polynomials of odd index:

QY (2) — Q%) _,(2)
1) '
k

QS (2) = (2.7)

According to (2.2) and (2.7) the polynomials Q,(Cj ) satisfy the recurrences
QQk 1(2) == mk QQk 2(2 )—i—Qng)_g(z),

Q%) (=) = 1Q%) (=) + QY _,(2),

k=1,...,n;, j=1,2, and the initial conditions

QY (z) =0, QY (z) = 1.
Substituting (2.6) into (2.3) and (2.4) we obtain:
Q%Bl( Jur) = Qi (2)u”, (2.8)
(4) (j) _
Z an]‘—l - 0 (29)

The spectrum of problem (2.2)-(2.5) coincides with the set of zeros of
the determinant of system (2.8), (2.9), i.e. of the polynomial
(

3(2) = Q%) _1(2)Q%) () + Q%) (2)Q%) _ (). (2.10)

It is clear that Qan (z) is the characteristic polynomial of a Neumann-
Dirichlet problem on j-th string:

() (4) (4) ©)

U — U | Y T U (G) ()
G 0 my zuy’ =0, (2.11)
k k—1
u§) = u, (2.12)
ul),, =0, (2.13)
kE = 1,...,n;, while ngn)j_l(z) is the characteristic polynomial of the

Neumann-Neumann problem on the j-th string:
ul(ej) _ @ (4) ©)

Ypt1 | Y% “ U1 (), () _ _ A
ll(gj) l,(j)l my zuy’ =0 (k=1,...,nj),
u§) = uf, (2.14)
u) ) =uf). (2.15)
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Qg ()
According to [6, Appendix II, equation (28)] the ratio (]2)7]) can be
2nj—1 z
expanded into the following continued fraction:

. 1
Q2nj( z) :lgljj) + ., (2.16)
Q) _1(2) EC) I 1
- !
nJ-—l
m 44 S
n —1
Wyt
—mgj)z
and with account of (2.1) we obtain
Qfn,-1(2)
lim wom1F —m,;. (2.17)

z—0 ZQ (4) ( )

Definition 2.1. (see e.g. [14, Definition 5.1.20]). A function w(z) is said
to be Nevanlinna (or R-function in terms of [11]), if;
1) the function w(z) is analytic in the half-planes Imz > 0 and Imz < 0;
2) w(z) = w(2);
3) Imz Imw(z) > 0 for Imz # 0.

Definition 2.2. (see [11] or [14, Definition 5.1.24]). A Nevanlinna function
w(z) is said to be S-function, if w(z) > 0 for z < 0.

Theorem 2.3. After cancellation of common factors (if any) in the nu-
merator and the denominator the function

12, Q%) ()
¢(2)
becomes an S-function.

Proof. Using (2.10) we arrive at

o Q%) () (& Q%) 4(2)

o(z) 2

j=1 ngn)j (2)

-1

Q(J),( )
Since Qmij() is a Nevanlinna function, we conclude, see [14, Lemma 2.4.5],
”] -1z

: : -1
1 (2) . . 2 Q) ()
that — T is a Nevanlinna function too as well as | > f .
J( z) j=1 ; (Z)
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()
Since the S-function Q(f)n](z()) is positive for all z € (—o0,0), it follows that
z

an—l

2 09 1))
P e is also positive for z € (—00,0). O
j=1 2n; (2)

Let n = Z nj and {p}p_y (wr > e for k > k') be the eigenvalues of

problem (2. 2) (2.5).
Now let us consider the spectral problem which describes the case where
the point P is clamped. Then instead of equations (2.2)-(2.5) we have

Uz(f) - “1&21 ul(cj) - Ui(i)1 G G)

5 0 —m 2w =0, (2.18)
k k—1
1 2
Uy = Uiy =0, (2.19)
uf) =, (2.20)

fork=1,...,n;and j =1,2.
Denote by &1y (&k < &kqr) the spectrum of problem (2.18)-(2.20)

and by {yk )}k (7 U) < Z/I(izl) the spectrum of Newmann-Dirichlet prob-
lem (2.11)-(2.13) on j-th string. The spectrum {{k}k | is the union of the

spectra of problems (2.11)-(2.13), i.e. {&k}), = U {I/k [

Theorem 2.4. The sequences {ui}y_, and {&x}7_, satisfy the following
conditions:

1) 0=m <& <pp <o <&y
2) Mk = §k—1 if and only Zf:uk = &k, (k =2,.. .,TL),‘
3) the multiplicity of each & does not exceed 2.

Proof. By Theorem 2.3 the rational function
4 oW
j=1
¢(2)

is an S-function (after cancellation of common factors in the numerator

and the denominator, if any) and thus the zeros of this rational function
interlace with its poles:

0<pu <& <pp <. <&
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Let & = py and & = V;(, ) for some k and p, then (2.10) implies

Qb1 (D) Q5 4) + Q5 (D) Q8,1 (04) = 0. (2.21)
Since VI(,I) is a zero of the polynomial Qin(z) we have ngrzjfl(ngj)) # 0.

Then due to (2.21) we obtain
QL) L (@5, (D) = 0

and, consequently,
Q5 (5 = 0.
Thus, &1 = & and &1 = ur = & and statement 2) is proved.
Statement 2) implies 1 < &;. Since ngn)rl(O) =0forj=1and j =2
we see that due to (2.10) ¢(0) = 0, and therefore 1 = 0 and statement 1)
is proved.

The multiplicity of the zeros of H Q2n (z) can not exceed 2 because
j=1
each factor in the product has only simple zeros. U

Theorem 2.5. After cancellation of common factors in the numerator and
denominator the rational function

¢(2)
H Qan—l( )

becomes an S-function.

Proof. Using (2.10) we obtain

o) _ Q) Q)
2 "o o 0® )
Q5 () Qe Qo)
=1
Q3 (2)
Since ni] (j = 1,2) are S-functions we conclude that their sum is
Q2nj—1( )
an S-function too, see [14, Lemma 2.5.4]. O

Denote by {x,(j)}Zil, 0= ng)

polynomial le)jfl(z) and let

@)~ ... ()

< X3 < Xnj, the zeros of the

2
{7 }i—1 = U{Xz(j)}Zil

J=1
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Theorem 2.6. The sequence {11 }}_, interlaces with {py}}_, as follows:
DO0=m=p=7g<pp <73 < p3 <74 <0 < g
2) pp =1, (k=3,...,n—1), if and only if pux = Tg+1;
3) the multiplicity of T does not exceed 2.

Proof. Since by Theorem 2.5
¢(2)
EINE)
Hl QQTLJ'—I(Z)
]:

is an S-function (after cancellation of common factors in the numerator
and the denominator, if any) and thus the zeros of this rational function
interlace with its poles:

TSl ST <o <73 <3 <7y < < g

Let pup =1, = X](yl) then
Q-1 0 Q5m, (068) + Q3 () Q5,1 () = 0.

implies
Q2n1 <Xp )ang 1(Xp )) =0.

1 1 . . (2
Since an)l 1 (xp ( )) = 0 implies Q%( ) # 0, we have Q2n1( )) = 0.
Statement 2) is proved.
Since X(l) = X?) = 0 we have 11 = 7 = 1 = 0. This together with
Statement 2) implies Statement 1).
Statement 3) follows from simplicity of the eigenvalues of each of prob-

lems (2.11), (2.14), (2.15) with j =1 and j = 2. O

3. INVERSE PROBLEM

In this section we consider the inverse problem of recovering the sets

{mggj) Zil? {l J)}k 1 .] = 1727

using the spectrum {p}}_;, all but one elements of

2
(&), = U,
7j=1
2

and the total masses m; of the parts of the string. Here n = ) nj;.
j=1
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Theorem 3.1. Let the total masses mj > 0, j = 1,2, be given. Let also
{u}i_, be the spectrum of problem (2.2)- (2 5) (1) | be the spectrum

of problem (2.11)-(2.13) with j =1, and {V i) 1 be a sequence of eigen-
values (a part of spectrum) of problem (2.11)- (2 13) with j = 2 such that

O0=p1 <& <p2 <& < < &1 < n, (3.1)
where (& 12} = L Ul ey
Then these data umquely determine the masses {mk )}k o (=12
and the intervals {l,(cJ Bl i=1,2.

Proof. Let us construct the following polynomials:

Ro(2) = (my + my) ﬂ <1 - Z) (3.2)

2 HE

Ri(z) =[] (1 - V(Zl)> , (3.3)

k=1 k

no—1
Ro(2) = [] (1 - (ZQ)> . (3.4)
Vg

k=1

We consider the following functional equation
Ro(z) = maRy(2)X2(2) + miRa(2)X1(2) (3.5)

under the conditions X;(0) = X»(0) = 1. Substituting z = V,gl) into equa-
tion (3.5), and taking into account (3.2)-(3.4) (notice that (3.1) and (3.4)
imply Rg(yk ) # 0), we obtain

X1(vy”) & (3.6)
no—1 l/p
k=1 vy
Denote l/él) = 0 and set
X)) =
Let us construct the following Lagrange interpolating polynomial
5 ni 5 (1) ni 5 ]/(1)
p=0 i#p,i=0 V. i
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Denote by {Xk}nlJr1 the zeros of the polynomial X;. Evidently,
~1

d
—(R1(2)Ra(2))
By = R R | dz =)
p 1) d
mi1Ra(vp ) mi @
dle(Z) )

If Vp = ¢&,, then
(—=1)" Ro(") = Ro(&)(~1)" <0,

0 ZRERE)| = L RERE)| >0
( 1)p dﬁ;lz(z) Z_VI(?U >0,
and, consequently,
(—1)P ' X (V) > 0. (3.8)

Therefore, the zeros {Xk ”IH of the polynomial X;(z) interlace with

{u,(cl) vl as follows:

0< ug) < Xé ) < 1/51) < XQQ < 1/,(11) < xf}fﬂ (3.9)

Now we construct the polynomial

Xl(z) = H (1 — 6) .
k=2 Xk

Due to (3.9) the ratio —Znﬁl)(é)(z) is an S-function and

with 1Y > 0, m{" > 0.
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Analogously to (3.6) we obtain

(3.10)

Denote by I/éQ) =0, and set

i) =1.

Then for Xg(z) we have the Lagrange interpolating polynomial

na—1 @ na—1 5 V(2)
% § % 2 7
XQ(Z) = XQ(Vp ) H ﬁ
p=0 i#pi=0Yp = T V;

Similarly to (3.8) we arrive at
(_1);0*1)2'2(”;2)) > 0.

The zeros {X,(f)}ZiQ of the polynomial X5(z) interlace with {l/,(f)};f:l as
follows:

0< l/§2) < xéz)

< << xD <. (3.11)
It follows from (3.9) and (3.11) that 1;—; is an S-function for j = 1 and
7 = 2. Therefore,

is also an S-function. This means that there is exactly one zero of X]_XQ

in the interval (p,,00). According to (3.11) this zero is X5111)+1 = 1/7(122) and

therefore 1/7(122) > . Then due to (3.1) we arrive at 1/,(122) > fy > x%).

Due to (3.11) and the inequality 1/7(32) > X1(122), we conclude that

e [, 2
ZmQXQ(Z) 1/7(122)
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is an S-function and

RQ(Z) z .
_zmng(z) <1 B 1/,2?) B

2

: :
@y (3.12)

1
2
2+

7m£7422)712 + e +

1

—m?)z

1+

where ll(f) > (0 and m,(f) > 0.

We identify the coefficients mgf) with the masses on the right part of the

string and the coefficients l,(f) with the subintervals of it.

Thus, we have found all the masses and the subintervals (except of l(()] ))
of the left (j = 1) and of the right (j = 2) part of the string.

Now we need to prove that the spectrum of problem (2.2)-(2.5) generated
by the obtained masses and subintervals coincides with {u}}_,, where
M1 = 0. )

Let Qan)J (z) be the characteristic polynomial of Neumann-Dirichlet prob-
lem (2.11)-(2.13) generated by the obtained masses {my}}_, and subinter-
vals {l;}}_, (the values léj) are arbitrary), let an)j_l(z) be the charac-
teristic polynomial of Neumann-Neumann problem (2.11), (2.14), (2.15).
Then (2.16) is valid. Comparing (2.16) where j = 1 with (3.12), we con-
clude that

Q%) (2) = TiRi(2), QN _1(2) = —Tymi2X:1(2), (3.13)

where 77 is a nonzero constant.
Comparing (2.16) where j = 2 with (3.12), we arrive at

G, (2) = TyRa(2) (1 - (22)>, Q5 _1(2) = ~TyzmaXa(2).  (3.14)
Urig

Using (3.13)-(3.14) we obtain
QW (2)Q%) _1(2) + Q%) (2)QW _1(2) =

_ _T1T2z<m2R1<z>f<z<z> FmR(2) X () (1 <z2>>> -

Vnoy

= —TlTQZRo(Z). (315)
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Thus, the spectrum of problem (2.2)-(2.5) generated by obtained masses
and subintervals is {0} U { }7_o-

Let us prove now that the solution of the inverse problem is unique.
Suppose there exists a collection

({00 R for j =1 and j = 2}
which does not commde with the obtained collection
{{l W {m ,g) WL for j=1and j =2},
which generates problem (2.2)-(2.5) with the spectrum {0}U{u}}_,, prob-
lem (2.11)-(2.13) with j = 1 whose spectrum is {1/,&1)}21:1 and problem (2.11)-
(2.13) with j = 2 for which {IJ(Q) il ! are eigenvalues. Then
d(z) = —ThThzRy(2) =

— T1R1(Z)Qéi)2—1(z) + T2R2(Z)Q$L)I_1(z) <1 — Né) >, (3.16)

2n9

where Q;gl_l and Qgi)rl are the characteristic polynomials of problem
(2.11), (2.14), (2.15) with j = 1 and j = 2, respectively, generated by the
sets
({9 (i for j=1and j = 2}.
Subtracting (3.16) from (3.15) and using (3.13) and (3.14) we obtain

gy B (1= =) - (1- =)

2n 2n

- 2
Tolia(2) Qo (2) = Q5 2)
and then 71 R;(0) = 0 which is false because 171 # 0 and R;(0) = 1. O

)
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