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On inverse problem for tree of Stieltjes
strings

Anastasia Dudko, Vyacheslav Pivovarchik

Abstract. For a given metric tree and two strictly interlacing sequences of
numbers there exits a distribution of point masses on the edges (which are
Stieltjes strings) such that one of the sequences is the spectrum of the spectral
problem with the Neumann condition at the root of the tree while the second
sequence is the spectrum of the spectral problem with the Dirichlet condition
at the root.

1. INTRODUCTION
Finite-dimensional spectral problems on an interval were considered in [5]

(some recent results see in [16, 17] and applications in [1, 4]). Finite-
dimensional spectral problems on graphs occur in various fields of physics:
mechanics of transverse vibrations of strings [6–8], longitudinal vibrations
of point masses joined by springs [11], synthesis of electrical circuits [3, 9].
By inverse problem we mean recovering the parameters of the problem us-
ing the spectra of system vibrations. Such a problem on an interval was
completely solved in [5], see [18] for generalization. For a star graph the
inverse problem was solved in [2, 14, 15, 19]. In these papers conditions on
sequences of numbers where obtained necessary and sufficient to be the
spectra of spectral problems on the whole graph and on the edges of it. It
was shown that the solution of this inverse problem is unique only in the
case of simple spectra.
Spectral problems on trees were considered in [12] where it was assumed

that the interior vertices of the tree are free of point masses. In this paper
we consider the case where point masses can be presented at the interior
vertices.
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In Section 2 we describe the spectral problems generated by Stieltjes
string equations on a tree with Dirichlet and Neumann conditions at the
root which is any of pendant vertices.
Section 3 contains some auxiliary results on Stieltjes functions.
In Section 4 we solve the direct problem, i.e. we show that the quotient

of characteristic polynomials of the Dirichlet and Neumann problems can
be expanded into branching continued fraction.
In Section 5 we solve the inverse problem of recovering values of point

masses and the lengths of subintervals between them using the total lengths
of the edges, the spectra of two problems: with the Dirichlet condition at
the root, first, and the Neumann condition, the second (Theorem 5.1). Also
we consider the inverse problem of recovering values of point masses and
the lengths of subintervals between them using the numbers of masses on
the edges, the spectra of two problems: with the Dirichlet condition at the
root, first, and the Neumann condition, the second (Theorem 5.2).

2. STATEMENT OF SPECTRAL PROBLEMS
Let T be a plane metric tree with q ě 2 edges. We denote by vi the

vertices, by d(vi) their degrees, by ej the edges, by lj their lengths by
nj ě 0 the numbers of point masses m(j)

1 , m
(j)
2 , . . ., m

(j)
nj which divide the

string into the subintervals l(j)0 , l
(j)
1 ,. . ., l

(j)
nj (l

(j)
k ą 0 for j = 0, 1, nj ´ 1,

l
(j)
nj ě 0, m(j)

k ą 0, lj =
nj
ř

k=0

l
(j)
k ). The case of l

(j)
nj = 0 corresponds to location

of m(j)
nj at an interior vertex. An arbitrary vertex is chosen to be the root.

The pendant vertices are free of masses. All the edges we direct away from
the root.
The root v is the beginning of a subinterval of length l

(j)
0 on each edge

ej incident with the root. Each other vertex vi have one incoming edge ej
ending with a subinterval of the length l

(j)
nj , while each outgoing edge er

begins at vi with an interval of lengths l(r)0 .
The degree of a vertex vi is denoted by d(vi), the indegree of it by d+(vi)

while the outdegree by d´(vi). It is clear that d+(vi) = 1 for each vi ­= v
and d+(v) = 0. At each pendant vertex vi which is not the root we have
d´(vi) = 0.
It is assumed that the tree is stretched and the pendant vertices ex-

cept the root are fixed. We consider two cases: in the first the root is fixed
(Dirichlet problem) while in the second the root is free to move in the direc-
tion orthogonal to the equilibrium position of the tree (Neumann problem).
The tree can vibrate in the direction orthogonal to the equilibrium position
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of the strings. The transverse displacement of the mass m(j)
k we denote by

w
(j)
k (t), the displacement of the root by w(t) where t is time.
If an edge ej is incoming for an interior vertex vi then the displacement

of the incoming end of the edge is denoted by w
(j)
nj+1(t), while if an edge er

is outgoing for a vertex vi then the displacement of the outgoing end of the
edge is denoted by w

(r)
0 (t). Using such notation vibrations of the tree can

be described by the system of equations

w
(j)
k (t) ´ w

(j)
k+1(t)

l
(j)
k

+
w

(j)
k (t) ´ w

(j)
k´1(t)

l
(j)
k´1

+m
(j)
k

B2w
(j)
k

Bt2
(t) = 0, (2.1)

(k = 1, 2, . . . , ñj ; j = 1, 2, . . . , q),

where ñj = nj ´ 1 if l(j)nj = 0 and ñj = nj if l(j)nj ą 0.
For each interior vertex vi (except of the root) with incoming edge ej

and outgoing edges er we impose the continuity conditions

w
(r)
0 (t) = w

(j)
ñj+1(t) (2.2)

for all r corresponding to outgoing edges. Balance of forces at such a vertex
vi implies

w
(j)
ñj+1(t) ´ w

(j)
ñj

(t)

l
(j)
ñj

+
ÿ

r

w
(r)
0 (t) ´ w

(r)
1 (t)

l
(r)
0

=

$

&

%

0, if l(j)nj
ą 0,

m(j)
nj

B2w
(j)
nj (t)

Bt2
, if l(j)nj

= 0.
(2.3)

where the sum is taken over all the outgoing edges. For an edge ej incident
with a pendant vertex (except of the root) we impose the Dirichlet boundary
condition:

w
(j)
nj+1(t) = 0. (2.4)

At the root we will consider the Dirichlet condition
w(t) = 0, i.e. w

(j)
0 (t) = 0 (2.5)

for all j corresponding to the edges incident with the root. We call prob-
lem (2.1)-(2.5) the Dirichlet boundary value problem on T .
To obtain the Neumann boundary value problem we change (2.5) for the

generalized Neumann conditions

w
(j)
0 (t) = w

(l)
0 (t) (2.6)

for all j and l corresponding to the edges incident with the root and
d(v)
ÿ

j=1

w
(j)
0 (t) ´ w

(j)
1 (t)

l
(j)
0

= 0. (2.7)
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We exclude from consideration the case with a mass at the root.
If the root is a pendant vertex then we denote by e1 the edge incident

with the root. In this case the Dirichlet condition (2.5) at the root is

w(t) = 0, i.e. w
(1)
0 (t) = 0 (2.8)

and the Neumann conditions (2.6), (2.7) in this case can be reduced to

w(t) = w
(1)
0 (t) = w

(1)
1 (t). (2.9)

Substituting w(k)
j (t) = eiλtu

(k)
j , wi(t) = eiλtui andw(t) = eiλtu into (2.1)-

(2.9) we obtain the corresponding spectral problems:

Dirichlet problem. For each edge:

u
(j)
k ´ u

(j)
k+1

l
(j)
k

+
u
(j)
k ´ u

(j)
k´1

l
(j)
k´1

´ m
(j)
k λ2u

(j)
k = 0, (2.10)

(k = 1, 2, . . . , ñj , j = 1, 2, . . . , q).

For each interior vertex (except for the root) with incoming edge ej and
outgoing edges er we have

u
(j)
ñj+1 = u

(r)
0 , (2.11)

and

u
(j)
ñj+1 ´ u

(j)
ñj

l
(j)
ñj

+
ÿ

r

u
(r)
0 ´ u

(r)
1

l
(r)
0

=

#

0, if l(j)nj ą 0,

´m
(j)
nj λ

2u
(j)
nj , if l(j)nj = 0.

(2.12)

For an edge ej incident with a pendant vertex (except of the root) we have
the Dirichlet boundary condition:

u
(j)
nj+1 = 0. (2.13)

At the root we have the Dirichlet condition

u = 0, i.e. u
(j)
0 = 0 (2.14)

for all j corresponding to the edges incident with the root.
If the root is a pendant vertex and e1 the edge incident with the root

then instead of (2.14) at the root we have

u
(1)
0 = 0. (2.15)
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Neumann problem. The Neumann problem on T consists of equations (2.10)-
(2.13), of

u
(j)
0 = u

(l)
0 (2.16)

for all j and l corresponding to the edges incident with the root and of
d(v)
ÿ

j=1

u
(j)
0 ´ u

(j)
1

l
(j)
0

= 0. (2.17)

If the root is a pendant vertex and e1 the edge incident with the root
then instead of (2.16) and (2.17) at the root we have

u
(1)
0 = u

(1)
1 . (2.18)

3. AUXILIARY RESULTS
Here we give some lemmas which are used in Section 4.

Definition 3.1. A rational function f(z) is said to be a Nevanlinna func-
tion if:

(i) it is analytic in the half-planes Imz ą 0 and Imz ă 0;
(ii) f(z) = f(z) (Imz ­= 0);
(iii) Imz Imf(z) ě 0 for Imz ­= 0.

Definition 3.2. A rational Nevanlinna function f(z) is said to be an S-
function if f(z) ą 0 for z ă 0.
Definition 3.3. A rational S-function f(z) is said to be an S0-function if
0 is not a pole of f(z).
The following lemmas are obvious.

Lemma 3.4. Suppose that f and g are rational S0-functions, then f + g
and (f´1 + g´1)´1 are also S0-functions.

Lemma 3.5. Let ϕj be a rational S0 function with nj zeros and nj poles
for j = 1, 2, . . . , s. Then

1
s

ř

j=1

1
ϕj

is a rational S0 function with ñ zeros and ñ poles where ñ ě maxtn1, n2, . . . , nsu.
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Lemma 3.6. (see [14, Lemma 2.2]) Let

φ = a0 +
1

´b1z +
1

a1 +
1

´b2z + . . .+
1

ar´1 +
1

´brz +
1

ar + ϕ

.

(3.1)

where aj ą 0 for j = 0, 1, . . . , r´1, ar ě 0, bj ą 0 for j = 1, 2, . . . , r and let
ϕ be a rational S0-function with n̂ poles and n̂ zeros. Then φ is a rational
S0-function with n̂+ r zeros and n̂+ r poles.

Lemma 3.7. A rational function

f(z) = C
n

ź

k=1

1 ´
z

(νk)2

1 ´
z

(µk)2

, (3.2)

is an S0-function if and only if C ą 0 and

0 ă (µ1)
2 ă (ν1)

2 ă . . . ă (µn)
2 ă (νn)

2.

Lemma 3.8. (see e.g. [10, Chapter II.2, p.19/26]). A rational function

f(z) = C
n

ź

k=1

1 ´
z

(νk)2

1 ´
z

(µk)2

, (3.3)

is an S0-function if and only if 0 ă (ν1)
2 ă (ν2)

2 ă . . . . ă (νk)
2 and

f(z)´1 =
n

ÿ

k=1

Ak

z ´ (νk)2
+B

where Ak ą 0 for k = 1, 2, . . . , n and

B ą

n
ÿ

k=1

Ak

(νk)2
.
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4. DIRECT PROBLEM
Here and in the sequel we consider a tree T rooted at a pendant ver-

tex. The Dirichlet problem on this tree consists of equations (2.10)-(2.13)
and (2.15), while the Neumann problem on it consists of (2.10)-(2.13)
and (2.18).
First of all we notice that interior vertices of degree 2 do not influence

the results and we can assume absence of such vertices without losses of
generality. Let P be a path in the tree T involving the maximum number
of masses. Obviously it starts and finishes with pendant vertices. We
denote the initial vertex by v0 and choose it as the root of the tree. The
enumeration of other vertices is arbitrary. We direct the edges away from
the root. Denote by ei the edge incoming into a vertex vi for all i. Then

P : v0 Ñ v1 Ñ vs2 Ñ vs3 Ñ . . . Ñ vsr´1 Ñ vsr .

Here r is a combinatorial length of the path. Deleting v0 and e1 we obtain
a new tree T 1 rooted at the vertex v1.
Since d(v1) ą 2 we can divide our tree T 1 into subtrees

T 1
1, T 1

2, . . . , T 1
d(v1)´1

having v1 as the only common vertex. (We say that T 1
1, T 1

2,…, T 1
d(v1)´1 are

complementary subtrees of T 1 (see Fig. 4.1).
Denote by ϕN (v) the characteristic polynomial of problem (2.10)-(2.13),

(2.18) on the tree T and by ϕD(v) the characteristic polynomial of prob-
lem (2.10)-(2.13), (2.15) on this tree. These polynomials are normalized
such that

ϕD(v)(0)

ϕN(v)(0)
= l1 +

1

d(v1)´1
ř

r=1

ϕNr(v1)
(0)

ϕDr(v1)
(0)

,

ϕD,r(v1)(z) is the characteristic polynomial of the Dirichlet problem (2.10)-
(2.13), (2.15) on T 1

r and ϕN,r(v1)(z) is the characteristic polynomial of the
Neumann (2.10)-(2.13), (2.18) on T 1

r and this expansion can be continued.
The following result was proved in [12] (see the proof of Corollary 2.9

there). In that paper it was assumed absence of point masses at the interior
vertices of the tree (l(j)nj ą 0 for all j) but the proof remains true if l(j)nj = 0
for some values of j.
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FIGURE 4.1.

Theorem 4.1. Let the root v be a pendant vertex of a tree T . Then the

quotient
ϕD(v)(z)

ϕN(v)(z)
can be expanded in continued fraction

ϕD(v)(z)

ϕN(v)(z)
= l

(1)
0 +

1

´m
(1)
1 z +

1

l
(1)
1 +

1

´m
(1)
2 z + . . .+

1

´m
(1)
n1 z +

1

l
(1)
n1 +

ϕD(v1)(z)

ϕN(v1)(z)

(4.1)

where ϕD(v1)(z) is the characteristic polynomial of problem (2.10)-(2.14) on
T 1 and ϕN(v1)(z) is the characteristic polynomial of problem (2.10)-(2.13),
(2.16), (2.17) on T 1,

ϕD(v1)(z)

ϕN(v1)(z)
=

1

d(v1)´1
ř

r=1

ϕNr(v1)(z)

ϕDr(v1)(z)

(4.2)

where d(v1) is the degree of v1 as a vertex of T , ϕDr(v1) is the characte-
ristic polynomial of problem (2.10)-(2.13), (2.15) on Tr and ϕNr(v1) is the
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characteristic polynomial of problem (2.10)-(2.13), (2.18) on it.

ϕDr(v1)(z)

ϕNr(v1)(z)
= l

(r)
0 +

1

´m
(r)
1 z +

1

l
(r)
1 +

1

´m
(r)
2 z + . . .+

1

´m
(r)
nr z +

1

l
(r)
nr + fr(z)

.

(4.3)

In turn each fr can be expanded similarly to (4.2), (4.3).
Remark 4.2. It is proved in [13] that the number of distinct eigenvalues
of each of the problems (2.10)-(2.13), (2.15) and (2.10)-(2.13), (2.18) on a
tree bearing masses on every edge is not less than the maximum number of
point masses on a path in this tree.

5. INVERSE PROBLEM
Theorem 5.1. Suppose tµkunk=´n, k ­=0 and tνkunk=´n, k ­=0 are symmetric
(µ´k = ´µk, ν´k = ´νk) and monotonic sequences of real numbers which
interlace:

0 ă (µ1)
2 ă (ν1)

2 ă . . . ă (µn)
2 ă (νn)

2. (5.1)

Let T be a metric tree of a prescribed formrooted at a pendant vertex v with
prescribed lengths of edges lj ą 0 (j = 1, 2, . . . , q, q is the number of edges
in T ). Then
1) there exist numbers nj P t0u Y N (j = 1, 2, . . . , q), sequences of positive
numbers tm

(j)
k u

nj

k=1 (point masses on the edge ej, j = 1, 2, . . . , q) and
numbers tl

(j)
k u

nj

k=0 (l
(j)
k ą 0 for all k = 0, 1, . . . , nj ´ 1, lnj ě 0 for

all j = 1, 2, . . . , g such that
nj
ř

k=0

l
(j)
k = lj,

q
ř

j=1
nj = n, the spectrum of

Neumann problem (2.10)-(2.13), (2.18), coincides with tµkunk=´n, k ­=0

and the spectrum of Dirichlet problem (2.10)-(2.13), (2.15) coincides
with tνkunk=´n, k ­=0;

2) the two spectra tµkunk=´n, k ­=0 and tνkunk=´n, k ­=0 and the length l1 of
the edge incident with the root uniquely determine the masses tm

(1)
k u

n1
k=1

(point masses on the edge e1) and lengths tl
(1)
k u

n1
k=0 of the subintervals

on this edge.
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Proof. First of all we consider the rational function

F (z) := ΦT,v
n

ź

k=1

1 ´
z

(µk)2

1 ´
z

(νk)2

, (5.2)

where ΦT,v ą 0 is the form characteristic of the tree T which depends
only on the form of the tree and the lengths of the edges. It can be found

substituting z = 0 in (4.1)-(4.3): ΦT,v :=
ϕN(v)(0)

ϕD(v)(0)
.

Let e1 be the edge connecting v with v1 and let l1 be the length of this
edge. Substituting z = 0 in (4.1) we obtain

Φ´1
T,v = l1 +

ϕD(v1)(0)

ϕN(v1)(0)
ą l1 (5.3)

Due to (5.1) and ΦT,v ą 0, F´1(z) is an S0-function and, therefore can be
presented as

F (z)´1 = a0 +
1

´b1z +
1

a1 +
1

´b2z + . . .+
1

an´1 +
1

´bnz +
1

an

,

(5.4)

where ak ą 0 for k = 0, 1, . . . , n and bk ą 0 for k = 1, 2, . . . , n.
Since F´1(0) =

n
ř

k=0

ak = Φ´1
T,v ě l1, we can choose the integer number

n1 such that
n1´1
ÿ

k=0

ak ď l1 ă

n1
ÿ

k=0

ak (5.5)

and present F (z)´1 as follows:

F (z)´1 = a0 +
1

´b1z +
1

a1 +
1

´b2z + . . .+
1

an1´1 +
1

´bn1z +
1

ân1 + F1(z)´1

(5.6)
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where

ân1 = l1 ´

n1´1
ÿ

k=0

ak (5.7)

and

F1(z)
´1 = an1 ´ ân1 +

1

´bn1+1z +
1

an1+1 +
1

´bn1+2z + . . .+
1

an´1 +
1

´bnz +
1

an

.

(5.8)

We identify ta0, a1, . . . , an1´1, ân1u with the subintervals of the edge e1 and
tb1, b2, . . . , bn1u with the masses on it:

ak = l
(1)
k , (k = 0, 1, . . . , n1 ´ 1),

ân1 = l(1)n1
,

bk = m
(1)
k , (k = 1, 2, . . . , n1).

Since d(v1) ą 2 in T , we divide the tree T 1 into d(v1)´1 complementary
subtrees Tj rooted at v1 each (see Fig. 5.1). It is clear that F1(z)

´1 belongs
to S0 and therefore

F1(z) = ΦT 1,v1

n´n1
ź

k=1

1 ´
z

(µ̃k)2

1 ´
z

(ν̃k)2

, (5.9)

where
Φ´1
T 1,v1

= Φ´1
T,v ´ l1,

0 ă (µ̃1)
2 ă (ν̃1)

2 ă (µ̃2)
2 ă . . . ă (ν̃n´n1)

2

It is known that if F1(z)
´1 belongs to S0 then

F1(z) =
n´n1
ÿ

k=1

Ak

z ´ (ν̃k)2
+B, (5.10)

Ak ą 0, B ą 0 (5.11)
and since F´1(0) = Φ´1

T 1,v1
we have

B = ΦT 1,v1 +
n´n1
ÿ

k=1

Ak

(ν̃k)2
.
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FIGURE 5.1.

Let us choose nonnegative integers Nj (j = 1, 2, . . . , d(v1)´ 1) such that
d(v1)´1

ÿ

j=1

Nj = n ´ n1.

Since ΦT 1,v1 ą 0 and therefore,

B ą

n´n1
ÿ

k=1

Ak

(ν̃k)2
(5.12)

We arrange the set t(ν̃k)
2u

n´n1
k=1 as the union of disjoint sets

t(ν̃
k
(1)
s
)2u

N1
s=1, t(ν̃

k
(2)
s
)2u

N2
s=1, . . . , t(ν̃

k
(d(v)´1)
s

)2u
Nd(v1)´1

s=1
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and choose numbers Bj

(j = 1, 2, . . . , d(v1) ´ 1) such that

d(v1)´1
ÿ

j=1

Bj = B (5.13)

and

Bj ą

Nj
ÿ

s=1

Aks

(ν̃
(j)
ks

)2
. (5.14)

Then

F1(z) = ΦT 1,v1

n´n1
ź

k=1

1 ´
z

(µ̃k)2

1 ´
z

(ν̃k)2

=

d(v1)´1
ÿ

j=1

 Nj
ÿ

s=1

Aks

z ´ (ν̃
(j)
ks

)2
ks +Bj

 . (5.15)

Put

ΦTj ,v1 = Bj ´

Nj
ÿ

s=1

Aks

(ν̃
(j)
ks

)2
ą 0. (5.16)

We will show that there exists a distribution of masses on the complimen-
tary subtrees Tj (j = 1, 2, . . . , d(v1) ´ 1), d(v1)´1

Y
j=1

Tj = T 1 such that

1) the number of masses in Tj is Nj ;
2) the form characteristic of Tj is ΦTj ,v1 and the rational function

Nj
ÿ

s=1

Aks

z ´ (ν̃
(j)
ks

)2
+Bj (5.17)

having Nj simple zeros and Nj simple poles is
ϕ
(j)
N (z)

ϕ
(j)
D (z)

, where ϕ
(j)
N (z)

and ϕ
(j)
D (z) are the characteristic polynomials for the Neumann and the

Dirichlet problems on the subtree Tj .



14 A. Dudko, V. Pivovarchik

Let us expand
(

Nj
ř

s=1

Aks

z ´ (ν̃
(j)
ks

)2
+Bj

)´1

into continued fractions

 Nj
ÿ

s=1

Aks

z ´ (ν̃
(j)
ks

)2
+Bj

´1

=

= a
(j)
0 +

1

´b
(j)
1 z +

1

a
(j)
1 +

1

´b
(j)
2 z + . . .+

1

a
(j)
Nj´1 +

1

´b
(j)
Nj

z +
1

a
(j)
Nj

,

(5.18)

It is clear that due to (5.11) and (5.14) the left hand side of (5.18) is an
S0-function.

We define ñj by the inequalities
ñj´1
ř

k=0

a
(j)
k ď l1,j ă

ñj
ř

k=0

a
(j)
k where l1,j is

the length of the edge of Tj incident with v1. Then we can rewrite (5.18)
as

 Nj
ÿ

s=1

Aks

z ´ (ν̃
(j)
ks

)2
+Bj

´1

=

= a
(j)
0 +

1

´b
(j)
1 z +

1

a
(j)
1 +

1

´b
(j)
2 z + . . .+

1

a
(j)
ñj´1 +

1

´b
(j)
ñj

z +
1

ã
(j)
ñj

+ F´1
j,1 (z)

,

(5.19)

where

ã
(j)
ñj

= l1,j ´

ñj´1
ÿ

k=0

a
(j)
k ą 0
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and

F´1
j,1 (z) = a

(j)
ñj

´ ã
(j)
ñj

+
1

´b
(j)
ñj+1z +

1

a
(j)
ñj+1 +

1

´b
(j)
ñj+2z + . . .+

1

a
(j)
Nj´1 +

1

´b
(j)
Nj

z +
1

a
(j)
Nj

.

(5.20)

We identify numbers a(j)0 , a
(j)
1 , . . . , a

(j)
ñj´1, ã

(j)
ñj
with the lengths of subin-

tervals l(1,j)0 , l
(1,j)
1 , . . . , l

(1,j)
ñj

and b
(j)
1 , b

(j)
2 , . . . , b

(j)
ñj
with the values of masses

m
(1,j)
1 , . . . ,m

(1,j)
ñj

on the edge e1,j . In the same way as (5.9) we obtain

Fj,1(z) =

Nj´ñj
ÿ

k=1

Ãk

z ´ (ν̃k)2
+ B̃j (5.21)

with Ã
(j)
k ą 0 and B̃j ą

Nj´ñj
ř

k=1

Ãk

(ν̃
(j)
k )2

.

Denote by v1,j the second vertex incident with e1,j and by d(v1,j) the
degree of v1,j Now we consider the tree T 1

j obtained by deleting the edge
e1,j from Tj (see Fig. 5.1). Let v1,j be the root of T 1

j .
Substituting z = 0 into (5.15) and making use of (5.16) we obtain

ΦT 1,v1 =

d(v1)´1
ÿ

i=1

ΦTj ,v1 .

On the other hand, (5.19) implies

Φ´1
Tj ,v1

= l1,j + Fj,1(0)
´1

and consequently, F´1
j,1 (0) = Φ´1

T 1
j ,v1
.

We continue this procedure. Finally we obtain a branching continued
fraction. We identify

a
(j)
k = l

(1,j)
k , (k = 0, 1, . . . , nj ´ 1),

ânj = l(1,j)nj
,

b
(j)
k = m

(1,j)
k , (k = 1, 2, . . . , n1,j).
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According to Theorem 4.1 the problems (2.10)-(2.13), (2.18) and (2.10)-
(2.13), (2.15) with these masses and subintervals have the quotient

ϕD(v)(z)

ϕN(v)(z)
= F´1(z),

where F (z) is given by (5.2).
Since the equation (5.6) uniquely determines the sets taku

n1´1
k=0 Y tân1u

and tbku
n1
k=1 and (5.7) uniquely determines the number n1 Statement 2) is

valid. □

Theorem 5.2. Suppose tµkunk=´n, k ­=0 and tνkunk=´n, k ­=0 are symmetric
(µ´k = ´µk, ν´k = ´νk) and monotonic sequences of real numbers which
interlace:

0 ă (µ1)
2 ă (ν1)

2 ă . . . ă (µn)
2 ă (νn)

2. (5.22)
Let T be a metric tree of a prescribed form rooted at a pendant vertex v
with prescribed number of masses on the edges nj ě 0 (j = 1, 2, . . . , q, q is
the number of edges in T , nj ě 0,

q
ř

j=1
nj = n).

Then there exist sequences of positive numbers tm
(j)
k u

nj

k=1 (point masses
on the edge ej, j = 1, 2, . . . , q) and numbers tl

(j)
k u

nj

k=0 (l
(j)
k ą 0 for all

k = 0, 1, . . . , nj ´ 1, lnj ě 0 for all j = 1, 2, . . . , g such that the numbers
of point masses on the edge ej is nj (j = 1, 2, . . . , q) and the spectrum
of Neumann problem (2.10)-(2.13), (2.18), coincides with tµkunk=´n, k ­=0

and the spectrum of Dirichlet problem (2.10)-(2.13), (2.15) coincides with
tνkunk=´n, k ­=0.

Proof. We choose an arbitrary positive number ΦT,v and construct the
rational function F (z) as in (5.2) and expand F´1(z) into continued frac-
tion (5.4), choose l1 such that satisfies (5.5) and define

Φ´1
T 1,v1

:= Φ´1
T,v ´ l1.

Since

l1 ă

n1
ÿ

k=0

ak ď

n
ÿ

k=0

ak = F´1(0) = Φ´1
T,v

we arrive at
Φ´1
T 1,v1

ą 0.

Now Nj (j = 1, 2, . . . , d(v1)´1) which is the total number of point masses
on Tj can be calculated using the given values of numbers of point masses
nj corresponding to the edges of Tj .
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We arrange the set tAku
n´n1
k=1 of coefficients in (5.10) into groups tA

(j)
ks

u
Nj

s=1

(j = 1, 2, . . . , d(v)´ 1) in arbitrary way and choose positive numbers Bj in
so that (5.13), (5.14) hold. The latter is possible due to (5.12). Denote by
ΦTj ,v1 the values obtained via (5.16) and regarded as the form factors of
the trees Tj we are constructing. Due to Aj ą 0 and (5.14) the functions(

Nj
ř

s=1

Aks

z ´ (ν
(j)
ks

)2
+Bj

)´1

are S0-functions and, consequently, (5.19) holds.

Let us choose the length lj of the edge ej incident with v so that
nj´1
ÿ

k=0

a
(j)
k ď lj ă

nj
ÿ

k=0

a
(j)
k ,

where nj is the number of the masses on ej . Then we present the functions
as in (5.19) and (5.20) but with given nj instead of ñj . Then we continue
this procedure as in the proof of Theorem 5.1. □
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