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ON THE SECOND LARGEST MULTIPLICITY OF EIGENVALUES
FOR THE STIELTJES STRING SPECTRAL PROBLEM ON TREES

OLGA BOYKO, OLGA MARTYNYUK, AND VYACHESLAV PIVOVARCHIK

Abstract. The largest possible multiplicity of an eigenvalue of a spectral problem
generated by the Stieltjes string equations on a metric tree is ppen  - 1, where ppen is
the number of pendant vertices. We propose how to find the second largest possible
multiplicity of an eigenvalue of such a problem. This multiplicity depends on the
numbers of point masses on the edges of the trees.

Максимально можлива кратнiсть власного значення спектральної задачi,
породженої рiвняннями струни Стiлтьєса на метричному деревi, дорiвнює ppen  - 
1, де ppen — кiлькiсть висячих вершин. Ми пропонуємо, як знайти другу за
величиною кратнiсть власного значення такої задачi. Ця кратнiсть залежить вiд
кiлькостi точкових мас на ребрах дерев.

1. Introduction

Second order difference equations appear in different fields of physics (synthesis of
electrical circuits [6, p.129], transverse vibrations of the so-called Stieltjes strings (massless
elastic threads bearing point masses) [16, 3], and longitudinal vibrations of point masses
connected by springs [18].

It is known, see [3], that the eigenvalues of the Dirichlet problem (the spectral problem
with the Dirichlet boundary conditions at both ends) generated by the Stieltjes string
equations on an interval are simple and for any sequence of distinct positive numbers
\{ zk\} nk=1 there exists a (not unique) pair of sequences \{ mk\} nk=1, \{ lk\} nk=0 of positive numbers
such that \{ zk\} nk=1 is the spectrum of the corresponding Dirichlet problem while mk-s
are the values of the point masses and lk-s are the lengths of the subintervals into which
the string is divided by the masses. Also it is known from [3] that the data necessary
and sufficient to solve the inverse problem of recovering the sequences \{ mk\} nk=1, \{ lk\} nk=0

consist of two spectra: the spectrum of the Dirichlet spectral problem, and the spectrum
of the Dirichlet-Neumann spectral problem (the problem with the Dirichlet boundary
condition at one end and the Neumann boundary condition at the other end) and the
total length of the string.

Natural generalizations of such problems are the problems generated by Stieltjes string
equations on metric trees [4, 5, 7]. For applications, see [8]. In the case of a graph domain,
the problem can have multiple eigenvalues. Since we consider selfadjoint problems there
is no ambiguity between algebraic and geometric multiplicity.

For trees, the maximal multiplicity equals ppen - 1 where ppen is the number of pendant
vertices in the tree. This result, well known in quantum graph theory [17, 15], was proved
for the finite dimensional case in [1]. It should also be mentioned that related results for
the so-called tree-patterned matrices were obtained in [9] and [11]

Unfortunately, any general answer about restrictions on eigenvalue multiplicities for a
spectral problem on an arbitrary tree as well as for an arbitrary tree patterned matrices
is not known in spite of many particular results for tree-patterned matrices in [10, 11, 13].
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Such restrictions are known for tree-patterned matrices whose graphs are generalized
star and generalized double star [11] and for spectral problems generated by the Stieltjes
string equations on a star graphs [21, 22] and on the so-called snowflake graphs in [23].

In this paper we give an answer to the following question: if the spectral problem
generated by the Stieltjes string equations on a tree has an eigenvalue of maximal
multiplicity ppen  - 1, what is the second largest possible multiplicity of an eigenvalue of
this problem?

In Section 2 we give the corresponding definitions and describe the spectral problem
generated by the Stieltjes string recurrence relations on a connected graph. In Section 3
we recall the result on maximal possible multiplicity of an eigenvalue for spectral problem
on a tree and prove an auxiliary theorem. In Section 4 we present an algorithm for finding
the second largest possible multiplicity and consider examples.

2. Formulation of the problems

For a tree T we denote its vertices by vi, i = 1, 2, ..., p, where p is the number of the
vertices of T , its edges by ej , j = 1, 2, ..., g, where g is the number of edges of T . For each
i denote by d(vi) the degree of the vertex vi and for each j we denote by lj the length of
the edge ej and by nj the number of point masses on this edge.

We choose a pendant vertex \bfv as the root and direct the edges of T away from the
root to obtain an oriented graph. Then in addition to the degree d(vi) of a vertex vi we
introduce d+(vi), the indegree, the number of incident edges directed towards the vertex
and d - (vi), the outdegree, the number of incident edges directed away from the vertex
vi. For each vertex except of the root d+(vi) = 1 and for the root d+(\bfv ) = 0). For each
pendant vertex except of the root d - (vj) = 0.

The local coordinate identifies a directed edge ej (j = 1, 2, ..., g) of T with the interval
[0, lj ] and the coordinate xj increases in the direction of the edge.

Each edge ej is divided into nj + 1 subintervals of the lengths l(j)0 , l(j)1 ,..., l(j)nj by point

masses m(j)
1 , m(j)

2 , ..., m(j)
nj (l(j)k > 0, m(j)

k > 0, lj =
nj\sum 
k=0

l
(j)
k ). An interior vertex vi has

outgoing edges ej starting with subintervals of lengths l(j)0 , while the incoming edge er
ends at vi with an interval of length l(r)nr . It is assumed that the graph is stretched and the
pendant vertices are fixed. The graph can vibrate in the direction orthogonal to the plane
of equilibrium position of the tree. We denote by v(j)k (t) the transverse displacement of
the mass m(j)

k . If an edge ej is incoming to an interior vertex vi then the displacement
of the incoming end of the edge is denoted by v(j)nj+1(t), while if an edge er is outgoing

from a vertex vi then the displacement of the outgoing end of the edge is denoted v(r)0 (t).
Using such notation, transverse vibrations of the graph can be described by the system of
equations

v
(j)
k (t) - v

(j)
k+1(t)

l
(j)
k

+
v
(j)
k (t) - v

(j)
k - 1(t)

l
(j)
k - 1

+m
(j)
k

\partial 2v
(j)
k

\partial t2
(t) = 0 (2.1)

(k = 1, 2, . . . , nj , nj \geq 1, j = 1, 2, ..., g).

Let W - 
i be the set of indices of the edge outgoing away from the vertex vi. For pendant

vertices except the root W - 
i = \emptyset .

For each interior vertex with the incoming edge ej and outgoing edges er (r \in W - 
i )

we impose the continuity conditions

v
(r)
0 (t) = v

(j)
nj+1(t). (2.2)
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The balance of forces at such a vertex implies\sum 
r\in W - 

i

v
(r)
1 (t) - v

(r)
0 (t)

l
(r)
0

=
v
(j)
nj+1(t) - v

(j)
nj (t)

l
(j)
nj

. (2.3)

For an edge ej incident with a pendant vertex except of the root we impose the Dirichlet
boundary condition

v
(j)
nj+1(t) = 0. (2.4)

At the root we impose the Dirichlet condition for the problem which we call Dirichlet
problem on the tree T

v
(j)
0 (t) = 0. (2.5)

and
v
(j)
1 (t) = v

(j)
0 (t). (2.6)

for the problem which we call Neumann problem on the tree T .
Using the ansatz v(j)k (t) = ei\lambda tu

(j)
k , z = \lambda 2 we obtain from (2.1)–(2.6):

u
(j)
k  - u

(j)
k+1

l
(j)
k

+
u
(j)
k  - u

(j)
k - 1

l
(j)
k - 1

 - m
(j)
k zu

(j)
k = 0 (2.7)

(k = 1, 2, . . . , nj , j = 1, 2, ..., g).

For each interior vertex with incoming edge ej and outgoing edges er (r \in W - 
i ) we have

u
(r)
0 = u

(j)
nj+1. (2.8)

\sum 
r\in W - 

i

u
(r)
1  - u

(r)
0

l
(r)
0

=
u
(j)
nj+1  - u

(j)
nj

l
(j)
nj

. (2.9)

For each edge ej incident with a pendant vertex except of the root we have

u
(j)
nj+1 = 0. (2.10)

At the root we obtain
u
(j)
0 = 0. (2.11)

for the Dirichlet problem and
u
(j)
1 = u

(j)
0 (2.12)

for the Neumann problem on the tree T .

Assumption 2.1. Since presence of vertices of degree two does not change the multiplic-
ities of eigenvalues we assume in the sequel that each interior vertex is of degree higher
than two.

The fundamental system of two linearly independent solutions to (2.7) can be composed
by the polynomials R(j)

2k - 2(z, 0) and R
(j)
2k - 2(z, 1) which satisfy (see e.g. [3], Addition II)

the initial conditions R(j)
0 (z, 0) = 1, R(j)

 - 1(z, 0) =
1

l
(j)
0

, R(j)
0 (z, 1) = 1, R(j)

 - 1(z, 1) = 0 and
the recurrence relations

R
(j)
2k - 1(z, 0) =  - zm(j)

k R
(j)
2k - 2(z, 0) +R

(j)
2k - 3(z, 0),

R
(j)
2k - 1(z, 1) =  - zm(j)

k R
(j)
2k - 2(z, 1) +R

(j)
2k - 3(z, 1), (2.13)

R
(j)
2k (z, 0) = l

(j)
k R

(j)
2k - 1(z, 0) +R

(j)
2k - 2(z, 0) (k = 1, 2, . . . , nj),

R
(j)
2k (z, 1) = l

(j)
k R

(j)
2k - 1(z, 1) +R

(j)
2k - 2(z, 1) (k = 1, 2, . . . , nj), (2.14)



220 OLGA BOYKO, OLGA MARTYNYUK, AND VYACHESLAV PIVOVARCHIK

The general solution to (2.7) can be given in the form

u
(j)
k = R

(j)
2k - 2(z, 0)q

(j)
1 +R

(j)
2k - 2(z, 1)h

(j)
1

on the edge ej with constants q(j)1 and h(j)1 .
With this notations we obtain using (2.8)–(2.12):

h
(r)
1 = R

(j)
2nj

(z, 0)q
(j)
1 +R

(j)
2nj

(z, 1)h
(j)
1 , (2.15)\sum 

j\in W - 
r

q
(r)
1

l
(r)
0

= R
(j)
2nj - 1(z, 0)q

(j)
1 +R

(j)
2nj - 1(z, 1)h

(j)
1 . (2.16)

for each interior vertex with incoming edges ej and outgoing edge er: and

R
(j)
2nj

(z, 0)q
(j)
1 +R

(j)
2nj

(z, 1)h
(j)
1 = 0 (2.17)

for each edge ej incident with a pendant vertex.
At the root we have

h
(j)
1 = 0. (2.18)

for the Dirichlet problem and
q
(j)
1 = 0. (2.19)

for the Neumann problem.
Then the characteristic polynomial of problem (2.7)–(2.11), i.e. a polynomial whose

set of zeros coincides with the spectrum of the problem can be expressed by l(j)0 R
(j)
2nj

(z, 0),

l
(j)
0 R

(j)
2nj - 1(z, 0), R

(j)
2nj

(z, 1) and R(j)
2nj - 1(z, 1). To do it we introduce the following system

of vectors

\psi j(z) = \mathrm{c}\mathrm{o}\mathrm{l}\{ 0, 0, ...0, l(j)0 R
(j)
 - 2(z, 0), l

(j)
0 R

(j)
0 (z, 0), ..., l

(j)
0 R

(j)
2nj

(z, 0), 0, 0, ..., 0\underbrace{}  \underbrace{}  
n+2g

, 0, 0, ..., 0\underbrace{}  \underbrace{}  
n+2g

\} ,

\psi j+g(z) = \mathrm{c}\mathrm{o}\mathrm{l}\{ 0, 0, ..., 0\underbrace{}  \underbrace{}  
n+2g

, 0, 0, ..., 0, R
(j)
 - 2(z, 1), R

(j)
0 (z, 1), ..., R

(j)
2nj

(z, 1), 0, 0, ..., 0\underbrace{}  \underbrace{}  
n+2g

\} 

for j = 1, 2, ..., g, where g is the number of edges in G, n =
g\sum 

j=1

nj . We denote by Lj

(j = 1, 2, ..., 2g) the linear functionals C2n+4g \rightarrow C generated by (2.7)–(2.11). Then
\Phi (z) = \{ Lj(\psi p(z)\} 2gj,p is the characteristic matrix which represents the system of linear
equations describing the boundary conditions at pendant vertices and continuity and
balance of forces conditions for the interior vertices. We call

\phi D(z) := \mathrm{d}\mathrm{e}\mathrm{t}(\Phi (z))

the characteristic polynomial of problem (2.7)–(2.11). In the same way we construct
\phi N (z).

Let T be the above described tree with nj \geq 1 edges masses on the edge e1 (j =

1, 2, ..., g). Changing the masses m(j)
k (k = 1, 2, ..., nj , j = 1, 2, ..., g) and the intervals

l
(j)
k (k = 0, 1, ..., nj , j = 1, 2, ..., g) we change the \phi D and \phi N and therefore the sets of
their zeros, i.e. the spectra of the corresponding operators \scrL (D) and \scrL (N) and the
multiplicities of their eigenvalues too.

We denote the set of all obtained operators by \scrL T (D) and \scrL T (N). In the next section
we describe the maximal possible value of an eigenvalue multiplicity of the operators
\scrL (D) \in \scrL T (D) and \scrL (N) \in \scrL T (N) for a graph T of a tree of a given form and given
numbers nj .
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3. Maximal multiplicity and auxiliary results

The maximum of eigenvalue multiplicity of the operator \scrL (D) for a tree is given by
the following theorem (see [1], Theorem 4.3).

Theorem 3.1. Let nj \geq 1 for all j. Then the maximal multiplicity of an eigenvalue of
the operator \scrL (D) defined on a tree with g \geq 1 is \omega := ppen  - 1, where ppen is the number
of pendant vertices. Equivalently, \omega = g - pin where pin is the number of interior vertices.

Definition 3.2. (see, e.g. [19], Definitions 5.1.20, 5.1.24). A function f : z \mapsto \rightarrow f(z) of a
complex variable z (or simply f(z) by abuse of notation) is called Nevanlinna function
(R-function in terms of [14]) if

1) f is analytic for z in the half-planes \mathrm{I}\mathrm{m}z > 0 and \mathrm{I}\mathrm{m}z < 0,
2) f(z) = f(z) for \mathrm{I}\mathrm{m}z \not = 0,
3) \mathrm{I}\mathrm{m}z \cdot \mathrm{I}\mathrm{m}f(z) \geq 0 for \mathrm{I}\mathrm{m}z \not = 0,

and it is called an S-function if, in addition,
4) f is analytic for z /\in [0,\infty ),
5) f(z) > 0 for z \in ( - \infty , 0);

an S-function f(z) is called an S0-function if
6) 0 is not a pole of f .

Theorem 3.3. Let T be a tree of g edges with the numbers of masses on the edges nj \geq 1
for all j = 1, 2, ..., g, n =

\sum g
j=1 nj and let 0 < \nu 0 < \~\nu . Then there exists a collection

\{ \{ m(j)
k \} nj

k=1, \{ l
(j)
k \} nj

k=0, j = 1.2., , , .g\} such that \nu 0 is the lowest (simple) eigenvalue of
problem (2.7)–(2.11) and \~\nu is an eigenvalue of multiplicity ppen  - 1.

Proof. It is known (see [24]) that the number of distinct eigenvalues of problem (2.7)–
(2.11) is not less than the maximal length n0 of the paths in the tree measured in numbers
of masses on the edges of the path.

Choose any numbers \{ \nu k\} n0 - 2
k=1 and \{ \mu k\} n0

k=0 such that

0 < \mu 0 < \nu 0 < \mu 1 < \nu 1 < ... < \nu n0 - 2 < \mu n0 - 1 < \~\nu . (3.1)

Then

F (z) = l

\prod n0 - 2
s=0

\Bigl( 
1 - z

\nu s

\Bigr) \bigl( 
1 - z

\~\nu 

\bigr) 
\prod n0 - 1

s=0

\Bigl( 
1 - z

\mu s

\Bigr) 
where arbitrary l > 0 is an S0-function (see Lemma 2.2 in [21]). Being such it can be
expanded in the continued fraction:

F (z) = a
(1)
0 +

1

 - b(1)1 z + 1

a
(1)
1 + 1

 - b
(1)
2 z+...+ 1

a
(1)
n0 - 1

+ 1

 - b
(1)
n0

z+ 1

a
(1)
n0

, (3.2)

where a(1)s > 0 (s = 0, 1, ..., n0), b
(1)
s > 0 (s = 1, 2, ..., n0).

Due to (3.1) the sequence \{ \nu k\} n0 - 1
k=0 \cup \{ \~\nu \} is the spectrum of the Dirichlet-Dirichlet

problem (see, e.g. [3])

u
(1)
k  - u

(1)
k+1

a
(1)
k

+
u
(1)
k  - u

(1)
k - 1

a
(1j)
k - 1

 - b
(1)
k zu

(1)
k = 0 (3.3)

(k = 1, 2, . . . , nn0
)

u
(1)
0 = u

(1)
n0+1 = 0 (3.4)
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on an interval of the length l and \{ \mu k\} n0

k=0 is the spectrum of the corresponding Neumann-
Dirichlet problem which consists of equation (3.2) and the boundary conditions

u
(1)
0  - u

(1)
1 = u

(1)
n0+1 = 0. (3.5)

We choose the pendant vertex \bfv which is the initial vertex of the path of maximal
length as the root of the tree T and denote by e1 the edge incident with the root. The
vertex v1 at the other end of e1 has the outdegree d - (v1). Denote by e2, e3, ..., ed - (v1)+1

the edges outgoing from v1 and by Tj (j = 2, 3, ..., d - (v1) + 1) the subtrees rooted at v1.
Denote by Nj the number of the masses in Tj (j = 2, 3...., d - (v1) + 1).

Let n1 be the number of masses on e1. Since each edge bears at least one mass
we have n1 < n0. Then we identify the coefficients \{ b(1)k \} n1

k=1 with the masses and
\{ a(1)k \} n1 - 1

k=0 \cup \{ \~a(1)n1 \} with the subintervals on e1. Since \~\nu is the largest eigenvalue of
Dirichlet-Dirichlet problem (3.3)–(3.4) the corresponding eigenvector has exactly one zero
between each two masses (see [2]). Therefore, a value \~a

(1)
n1 \in (0, a

(1)
n1 ) can be chosen such

that
a
(1)
0 +

1

 - b(1)1 \~\nu + 1

a
(1)
1 + 1

 - b
(1)
2 \~\nu ..+ 1

a
(1)
n1 - 1

+ 1

 - b
(1)
n1

\~\nu + 1

\~a
(1)
n1

= 0 (3.6)

and f1(\~\nu ) = 0 where

f1(z) = a(1)n1
 - \~a(1)n1

+
1

 - b(1)n1+1z +
1

a
(1)

(n1+1)
+ 1

 - b
(1)
n1+1

z+...+ 1

a
(1)
n0 - 1

+ 1

 - b
(1)
n0

z+ 1

a
(1)
n0

. (3.7)

Since f1(\~\nu ) = 0 and f1(z) is an S0-function, it can be presented in the form

f1(z) =

\Biggl( 
B +

A

z  - \~\nu 
+

n0 - n1 - 1\sum 
s=1

As

z  - \tau s

\Biggr)  - 1

(3.8)

where 0 < \tau 1 < \tau 2 < ... < \tau n0 - n1 - 1 < \~\nu and B > 0, A > 0, As > 0 (s = 1, 2, ..., n0 - n1 - 1).
The inequality \tau k < \~\nu is a consequence of the fact that the eigenvector of the Dirichlet-
Dirichlet problem (3.3)–(3.4) corresponding to the (largest) eigenvalue \~\nu has n0  - 1 nodes
(points of zero amplitude of vibration) and therefore the projection of this vector onto
the interval (\~l, l) having n0  - n1  - 1 nodes is the eigenvector of problem

u
(1)
k  - u

(1)
k+1

a
(1)
k

+
u
(1)
k  - u

(1)
k - 1

a
(1j)
k - 1

 - b
(1)
k zu

(1)
k = 0 (3.9)

(k = n1 + 1, . . . , nn0
)

\~u0
(1) = u

(1)
n0+1 = 0 (3.10)

corresponding to the eigenvalue \~\nu . Here \~u0 is the amplitude of the point which lies at the

distance \~l =
n1 - 1\sum 
k=0

a
(1)
k + \~a

(1)
n1 from the left end of the interval (0, l).

Let us consider the subtrees Tj (j = 2, 3, ..., d - (v1) + 1) rooted at v1. Denote by Nj

the number of masses, by n
(j)
0 the maximal length of the paths in Tj starting from v1

measured in number of masses (j = 2, 3...., d - (v1) + 1). Then due to (3.8) we can present
(f1(z))

 - 1 in the form

(f1(z))
 - 1 =

d - (v2)+1\sum 
j=2

Fj(z)
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where

Fj(z) = Bj +
A(j)

z  - \~\nu 
+

n
(j)
0\sum 

r=1

A
(j)
r

z  - \tau r
,

with Bj > 0.
d - (v1)+1\sum 

j=2

Bj = B, A(j) > 0,
d - (v1)+1\sum 

j=2

A(j) = A,
d - (v1)+1\sum 

j=2

A
(j)
r = Ar and

A
(j)
r = 0 for r > n

(j)
0 , A(j)

r > 0 for r \leq n
(j)
0 .

Thus, (Fj(z))
 - 1 is an S0-function with n(j)0 zeros and the same number of poles.

We apply this procedure to each of those of the subtrees Tj which are not just an edge.
If a subtree Tj is a star then using once more the above procedure we finish with this
subtree. If a subtree Tj is more complicated than a star graph we continue this procedure
more times. \square 

4. Second largest multiplicity

Suppose the maximal multiplicity \omega = ppen - 1 is possessed by an eigenvalue of problem
(2.7)–(2.11) on a tree. In this section we show how to find the second largest possible
multiplicity by a certain algorithm.

Definition 4.1. If an edge is incident with a pendant vertex which is not the root then
we call it a leaf. If all but one edges incident with the vertex v are leaves then we call v a
distance-one vertex.

Definition 4.2. A star subgraph S of a tree T centered at a distance-one vertex of T is
said to be a peripheral star graph if all but one pendant vertices of S are pendant vertices
of T .

Definition 4.3. We call an edge heavy (light) if it bears at least one mass (a massless
edge).

Definition 4.4. A peripheral star subgraph is said to be light if it has at most one heavy
leaf.

Let nj \geq 1 for all j and let there be an eigenvalue of multiplicity \omega . Then we can
calculate the second largest possible multiplicity via the following algorithm.

Algorithm
Step 1. Consider the tree T (1)

1 obtained from T by deleting one mass from each edge.
If, after this, there has not appeared any light edge then the second largest multiplicity is
again \omega = ppen  - 1.

If after deleting one mass from each edge there appeared light edges in T (1)
1 then we

proceed to
Step 2. Let vi be a distance-one vertex of the tree T (1)

1 . If there are p \geq 2 heavy edges
among the leaves of T (1)

1 incident with vi then we
(i) attribute a summand p - 1 to the second greatest multiplicity which we denote by

\omega 2,
(ii) call the vertex vi a separating vertex,
(iii) delete all leaves incident with vi.
Having done it for all the distance-one vertices we obtain a new tree T (1)

2 (see Fig. 1).
If T (1)

2 has at least one distance-one vertex with at least two heavy leaves then we
repeat step 2 and obtain a new tree T (1)

3 . We repeat step 2 until obtain a tree T (1)
r1 each

distance-one vertex of which has less than two heavy leaves. If T (1)
r1 is a path then we

add a summand 1 (or 0) to the second greatest multiplicity if there is a mass (no masses)
on the path and finish. If T (1)

r1 is not a path then we proceed to
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Step 3. We change one by one peripheral (light) star subgraph each for one edge
bearing a mass and obtain a new tree \~T

(1)
r1 (see Fig. 2).

Then we repeat the steps 2 and 3 for the tree \~T
(1)
r1 := T

(2)
1 and obtain \~T

(2)
r2 := T

(3)
1 .

We continue this procedure until come to 1) an isolated vertex or to 2) a graph Ps (paths
with s edges with some s \in \BbbN ) , or 3) to a star graph. If it is Ps with at least one mass
we add 1 to the second largest multiplicity. If it is Ps with no masses or just one vertex
then we have finished. If it is a star graph then we add the maximum multiplicity of this
star graph (which is less by one than the number of heavy edges of the star graph) to the
second largest multiplicity.

Theorem 4.5. Let a tree of Stieltjes strings be given and let
(i) nj \geq 1 for all j (j = 1, 2, ..., g).
(ii) problem (2.7)–(2.11) have an eigenvalue of multiplicity \omega = ppen  - 1,
Then the second largest possible multiplicity \omega 2 of an eigenvalue of (2.7)–(2.11) can be

found using the above Algorithm.

Proof. First, let us show that this value can be reached.
If nj \geq 2 for all j then we can choose \nu 1 > 0 and \nu 2 > \nu 1 and construct the edges of

our tree such that \nu 1 and \nu 2 are eigenvalues of the Dirichlet-Dirichlet problem on each
edge. Then the multiplicity of \nu 1 and the multiplicity of \nu 2 as eigenvalues of problem
(2.7)–(2.11) is equal to \omega (see [1] how to construct the corresponding eigenvectors).

Now let nj = 1 for some values of j. We will prove existence of a tree of given form
with given numbers of masses such that \nu 1 is the eigenvalue of problem (2.7)–(2.11) of
multiplicity \omega and \nu 2 \not = \nu 1 is an eigenvalue of multiplicity \omega 2 obtained by the Algorithm.

According to Theorem 3.3 we can construct a tree T such that 1) \nu 1 is an eigenvalue
of the Dirichlet-Dirichlet problem on each edge of T (and therefore \nu 1 is an eigenvalue of
multiplicity \omega of problem (2.7)–(2.11) and an eigenvalue of multiplicity p(j)pen - 1 of problem
(2.7)–(2.11) on each subtree Tj), 2) \nu 2 \not = \nu 1 is an eigenvalue of the Dirichlet-Dirichlet
problem on each heavy leave and an eigenvalue of problem (2.7)–(2.11) on each of the
subtrees (star subgraphs) which appear in Algorithm.

Now let us show that if an eigenvalue \nu 1 is of the maximal multiplicity \omega then the
second largest multiplicity of an eigenvalue cannot be larger than the multiplicity \omega 2

calculated by Algorithm.
The eigenvectors corresponding to the eigenvalue \nu 1 of problem (2.7)–(2.11) on T of

maximal multiplicity \omega correspond to linearly independent paths in the tree. Each of
eigenvectors have nodes (for the case of a tree we also call node a point of zero amplitude
if there are points of nonzero amplitude in an arbitrary small neighborhood of this point)
at all the interior vertices of the path (see [1]).

Each eigenvector corresponding to \nu 2, the eigenvalue of the second largest multiplicity,
has nodes at the separating vertices as it is described in Algorithm. To try to raise the
second largest multiplicity we can suppose that an eigenvector has a zero at a vertex
w which is not separating. If a star graph has masses only on one of its edges then
its eigenvalues are all simple, moreover the central vertex is never a node. Thus, the
multiplicity calculated by Algorithm is the second maximal. \square 

Example 1. Let us consider the graph of Fig 1. The maximal possible multiplicity
of the spectral problem correspondent to the tree T is ppen  - 1 = 12. Let this value be
achieved by an eigenvalue. Now we use Algorithm to find the second largest possible
multiplicity. Coming from T

(1)
1 to T (1)

2 we assign a summand +2, coming from T
(1)
2 to

T
(1)
3 we add +1, coming from T

(2)
1 to T (2)

2 we add +2, coming from T
(3)
1 to T (3)

2 we add
+1. Thus all in all the second largest multiplicity is 6.

Example 2. Let us consider the graph of Fig 2. The maximal possible multiplicity
is ppen  - 1 = 7  - 1 = 6. Let this value be achieved by an eigenvalue. Then applying
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Algorithm we obtain +4 coming from T
(1)
1 to T (1)

2 and +1 due to presence of a mass on
T

(2)
1 = P2. Thus all in all the second largest possible multiplicity is 5.
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